We describe a set of computational tools able to estimate cortical activity and connectivity from high- resolution EEG and fMRI recordings in humans. These methods comprise the estimation of cortical activity using realistic geometry head volume conductor models and distributed cortical source models, followed by the evaluation of cortical connectivity between regions of interest coincident with the Brodmann areas via the use of Partial Directed Coherence. Connectivity patterns estimated on the cortical surface in different frequency bands are then imaged and interpreted with measures based on graph theory. These computational tools were applied on a set of EEG and fMRI data from a Stroop task to demonstrate the potential of the proposed approach. The present findings suggest that the methodology is able to identify differences in functional connectivity patterns elicited by different experimental tasks or conditions.

Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory / Astolfi, Laura; DE VICO FALLANI, Fabrizio; Cincotti, Febo; D., Mattia; M. G., Marciani; S., Bufalari; Salinari, Serenella; Colosimo, Alfredo; L., Ding; J. C., Edgar; W., Heller; G. A., Miller; B., He; Babiloni, Fabio. - In: PSYCHOPHYSIOLOGY. - ISSN 0048-5772. - 44:6(2007), pp. 880-893. [10.1111/j.1469-8986.2007.00556.x]

Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory

ASTOLFI, LAURA;DE VICO FALLANI, FABRIZIO;CINCOTTI, FEBO;SALINARI, Serenella;COLOSIMO, Alfredo;BABILONI, Fabio
2007

Abstract

We describe a set of computational tools able to estimate cortical activity and connectivity from high- resolution EEG and fMRI recordings in humans. These methods comprise the estimation of cortical activity using realistic geometry head volume conductor models and distributed cortical source models, followed by the evaluation of cortical connectivity between regions of interest coincident with the Brodmann areas via the use of Partial Directed Coherence. Connectivity patterns estimated on the cortical surface in different frequency bands are then imaged and interpreted with measures based on graph theory. These computational tools were applied on a set of EEG and fMRI data from a Stroop task to demonstrate the potential of the proposed approach. The present findings suggest that the methodology is able to identify differences in functional connectivity patterns elicited by different experimental tasks or conditions.
2007
brain connectivity; fmri; graph theory; high-resolution eeg; partial directed coherence; stroop task
01 Pubblicazione su rivista::01a Articolo in rivista
Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory / Astolfi, Laura; DE VICO FALLANI, Fabrizio; Cincotti, Febo; D., Mattia; M. G., Marciani; S., Bufalari; Salinari, Serenella; Colosimo, Alfredo; L., Ding; J. C., Edgar; W., Heller; G. A., Miller; B., He; Babiloni, Fabio. - In: PSYCHOPHYSIOLOGY. - ISSN 0048-5772. - 44:6(2007), pp. 880-893. [10.1111/j.1469-8986.2007.00556.x]
File allegati a questo prodotto
File Dimensione Formato  
VE_2007_11573-357902.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 985.53 kB
Formato Adobe PDF
985.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/357902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 65
social impact