Based on the coherence principle of de Finetti and a related notion of generalized coherence (g-coherence), we adopt a probabilistic approach to uncertainty based on conditional probability bounds. Our notion of g-coherence is equivalent to the avoiding uniform loss property for lower and upper probabilities (a la Walley). Moreover, given a g-coherent imprecise assessment by our algorithms we can correct it obtaining the associated coherent assessment (in the sense of Walley and Williams). As is well known, the problems of checking g-coherence and propagating tight g-coherent intervals are NP- and FPNP-complete, respectively, and thus NP-hard. Two notions which may be helpful to reduce computational effort are those of non relevant gain and basic set. Exploiting them, our algorithms can use linear systems with reduced sets of variables and/or linear constraints. In this paper we give some insights on the notions of non relevant gain and basic set.We consider several families with three conditional events, obtaining some results characterizing g-coherence in such cases. We also give some more general results.

Some results on generalized coherence of conditional probability bounds / Biazzo, V; Gilio, Angelo; Sanfilippo, Giuseppe. - STAMPA. - 18:(2003), pp. 62-76.

Some results on generalized coherence of conditional probability bounds

GILIO, ANGELO;SANFILIPPO, GIUSEPPE
2003

Abstract

Based on the coherence principle of de Finetti and a related notion of generalized coherence (g-coherence), we adopt a probabilistic approach to uncertainty based on conditional probability bounds. Our notion of g-coherence is equivalent to the avoiding uniform loss property for lower and upper probabilities (a la Walley). Moreover, given a g-coherent imprecise assessment by our algorithms we can correct it obtaining the associated coherent assessment (in the sense of Walley and Williams). As is well known, the problems of checking g-coherence and propagating tight g-coherent intervals are NP- and FPNP-complete, respectively, and thus NP-hard. Two notions which may be helpful to reduce computational effort are those of non relevant gain and basic set. Exploiting them, our algorithms can use linear systems with reduced sets of variables and/or linear constraints. In this paper we give some insights on the notions of non relevant gain and basic set.We consider several families with three conditional events, obtaining some results characterizing g-coherence in such cases. We also give some more general results.
2003
Uncertain knowledge; coherence; g-coherence; imprecise probabilities; conditional probability bounds; lower and upper probabilities; non relevant gains; basic sets.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Some results on generalized coherence of conditional probability bounds / Biazzo, V; Gilio, Angelo; Sanfilippo, Giuseppe. - STAMPA. - 18:(2003), pp. 62-76.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/357750
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact