The paper describes the results of an investigation aimed at evaluating suitability of a lab-scale Sequencing Batch Biofilm Reactor (SBBR) for the remediation of groundwater contaminated by phenol (P) and 2-chlorophenol (2-CP). Kinetics of compound degradation was determined along the bed height in the absence and in presence of effluent recirculation, and with different influent composition (compounds fed separately or in combination in the same stream). SBBR performances with and without recirculation were very satisfactory for all the influent compositions: the system showed 99% removal efficiencies for both phenol and 2-CP and their complete removal was always achieved far before the end of react. In the presence of recirculation, the concentration gradient established during fill was rapidly eliminated and an even biomass distribution along the bed height was formed. Consequently, an acceleration of the elimination process was observed, particularly for phenol that was mostly removed in the first hour of the cycle. When the compounds were fed simultaneously, 2-CP removal kinetics improved probably due to cometabolism. The adsorption phenomena of the toxic compounds on the packing material were studied also, showing about 50% COD removal after 7 hours contact time.
Remediation of chlorophenol and phenol contaminated-goundwater by a sequencing batch biofilm reactor / Farabegoli, Geneve; Chiavola, Agostina; Rolle, Enrico. - STAMPA. - 1:(2008), pp. 375-382. (Intervento presentato al convegno 4th Sequencing Batch Reactor Conference tenutosi a Roma nel 7-10 April 2008).
Remediation of chlorophenol and phenol contaminated-goundwater by a sequencing batch biofilm reactor
FARABEGOLI, Geneve;CHIAVOLA, Agostina;ROLLE, Enrico
2008
Abstract
The paper describes the results of an investigation aimed at evaluating suitability of a lab-scale Sequencing Batch Biofilm Reactor (SBBR) for the remediation of groundwater contaminated by phenol (P) and 2-chlorophenol (2-CP). Kinetics of compound degradation was determined along the bed height in the absence and in presence of effluent recirculation, and with different influent composition (compounds fed separately or in combination in the same stream). SBBR performances with and without recirculation were very satisfactory for all the influent compositions: the system showed 99% removal efficiencies for both phenol and 2-CP and their complete removal was always achieved far before the end of react. In the presence of recirculation, the concentration gradient established during fill was rapidly eliminated and an even biomass distribution along the bed height was formed. Consequently, an acceleration of the elimination process was observed, particularly for phenol that was mostly removed in the first hour of the cycle. When the compounds were fed simultaneously, 2-CP removal kinetics improved probably due to cometabolism. The adsorption phenomena of the toxic compounds on the packing material were studied also, showing about 50% COD removal after 7 hours contact time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.