The island of Ischia, Gulf of Naples, Italy, like many other volcanic islands is affected by mass failures, that are mainly related to secondary volcanic processes such as slope steepening and seismic shaking. The block resurgence of its main relief, Mount Epomeo, has been recognised to contribute cyclically to mass instability and cause landslides, that occasionally may reach the sea and start tsunamis. In this work we explore the consequences of the Ischia Debris Avalanche (IDA), a flank collapse that occurred in historical times, and involved the whole Mount Epomeo edifice including its submarine portion, and that may have caused gigantic sea waves affecting all the coasts of Ischia and of the Gulf of Naples. The IDA and the generated tsunami have been taken as the worst-case scenario for the occurrence of a new tsunami in the area. They have been simulated through numerical codes developed and maintained by the University of Bologna. The simulation shows that the IDA-induced tsunami attacks severely all the coasts of the Gulf of Naples with the highest waves obtained for the island of Ischia, the island of Capri and the peninsula of Sorrento. The propagation pattern of the IDA tsunami can be used to get hints on the impact that such an event may have had on early populations habiting Gulf of Naples, but also to get clues on the area that could be most severely hit by a tsunami generated by a smaller-scale landslide that may occur in the same source zone.

Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy / Stefano, Tinti; Chiocci, Francesco Latino; Filippo, Zaniboni; Gianluca, Pagnoni; G., De Alteriis. - In: MARINE GEOPHYSICAL RESEARCHES. - ISSN 0025-3235. - 32:1(2011), pp. 287-297. [10.1007/s11001-010-9109-6]

Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy

CHIOCCI, Francesco Latino;
2011

Abstract

The island of Ischia, Gulf of Naples, Italy, like many other volcanic islands is affected by mass failures, that are mainly related to secondary volcanic processes such as slope steepening and seismic shaking. The block resurgence of its main relief, Mount Epomeo, has been recognised to contribute cyclically to mass instability and cause landslides, that occasionally may reach the sea and start tsunamis. In this work we explore the consequences of the Ischia Debris Avalanche (IDA), a flank collapse that occurred in historical times, and involved the whole Mount Epomeo edifice including its submarine portion, and that may have caused gigantic sea waves affecting all the coasts of Ischia and of the Gulf of Naples. The IDA and the generated tsunami have been taken as the worst-case scenario for the occurrence of a new tsunami in the area. They have been simulated through numerical codes developed and maintained by the University of Bologna. The simulation shows that the IDA-induced tsunami attacks severely all the coasts of the Gulf of Naples with the highest waves obtained for the island of Ischia, the island of Capri and the peninsula of Sorrento. The propagation pattern of the IDA tsunami can be used to get hints on the impact that such an event may have had on early populations habiting Gulf of Naples, but also to get clues on the area that could be most severely hit by a tsunami generated by a smaller-scale landslide that may occur in the same source zone.
2011
model; stromboli; numerical modelling; landslide; tsunami; ischia debris avalanche; gulf of naples; collapse
01 Pubblicazione su rivista::01a Articolo in rivista
Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy / Stefano, Tinti; Chiocci, Francesco Latino; Filippo, Zaniboni; Gianluca, Pagnoni; G., De Alteriis. - In: MARINE GEOPHYSICAL RESEARCHES. - ISSN 0025-3235. - 32:1(2011), pp. 287-297. [10.1007/s11001-010-9109-6]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/356974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 33
social impact