Endosymbiotic bacteria from different species can live inside cells of the same eukaryotic organism. Metabolic exchanges occur between host and bacteria but also between different endocytobionts. Since a complete genome annotation is available for both, we built the metabolic network of two endosymbiotic bacteria, Sulcia muelleri and Baumannia cicadellinicola, that live inside specific cells of the sharpshooter Homalodisca coagulata and studied the metabolic exchanges involving transfers of carbon atoms between the three. We automatically determined the set of metabolites potentially exogenously acquired (seeds) for both metabolic networks. We show that the number of seeds needed by both bacteria in the carbon metabolism is extremely reduced. Moreover, only three seeds are common to both metabolic networks, indicating that the complementarity of the two metabolisms is not only manifested in the metabolic capabilities of each bacterium, but also by their different use of the same environment. Furthermore, our results show that the carbon metabolism of S. muelleri may be completely independent of the metabolic network of B. cicadellinicola. On the contrary, the carbon metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two essential amino acids, threonine and lysine. Next, in order to define which subsets of seeds (precursor sets) are sufficient to produce the metabolites involved in a symbiotic function, we used a graph-based method, PITUFO, that we recently developed. Our results highly refine our knowledge about the complementarity between the metabolisms of the two bacteria and their host. We thus indicate seeds that appear obligatory in the synthesis of metabolites are involved in the symbiotic function. Our results suggest both B. cicadellinicola and S. muelleri may be completely independent of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone of the metabolites provided to the symbiotic system (i:e., thr and lys are only exploited by B. cicadellinicola to produce its proteins). © 2010 Cottret et al.

Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, Baumannia cicadellinicola and Sulcia muelleri, with their insect host, Homalodisca coagulata / Ludovic, Cottret; Paulo Vieira, Milreu; Vicente, Acuna; MARCHETTI SPACCAMELA, Alberto; Leen, Stougie; Charles H., Sagot Mf. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-734X. - ELETTRONICO. - 6:9(2010), p. e1000904. [10.1371/journal.pcbi.1000904]

Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, Baumannia cicadellinicola and Sulcia muelleri, with their insect host, Homalodisca coagulata

MARCHETTI SPACCAMELA, Alberto;
2010

Abstract

Endosymbiotic bacteria from different species can live inside cells of the same eukaryotic organism. Metabolic exchanges occur between host and bacteria but also between different endocytobionts. Since a complete genome annotation is available for both, we built the metabolic network of two endosymbiotic bacteria, Sulcia muelleri and Baumannia cicadellinicola, that live inside specific cells of the sharpshooter Homalodisca coagulata and studied the metabolic exchanges involving transfers of carbon atoms between the three. We automatically determined the set of metabolites potentially exogenously acquired (seeds) for both metabolic networks. We show that the number of seeds needed by both bacteria in the carbon metabolism is extremely reduced. Moreover, only three seeds are common to both metabolic networks, indicating that the complementarity of the two metabolisms is not only manifested in the metabolic capabilities of each bacterium, but also by their different use of the same environment. Furthermore, our results show that the carbon metabolism of S. muelleri may be completely independent of the metabolic network of B. cicadellinicola. On the contrary, the carbon metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two essential amino acids, threonine and lysine. Next, in order to define which subsets of seeds (precursor sets) are sufficient to produce the metabolites involved in a symbiotic function, we used a graph-based method, PITUFO, that we recently developed. Our results highly refine our knowledge about the complementarity between the metabolisms of the two bacteria and their host. We thus indicate seeds that appear obligatory in the synthesis of metabolites are involved in the symbiotic function. Our results suggest both B. cicadellinicola and S. muelleri may be completely independent of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone of the metabolites provided to the symbiotic system (i:e., thr and lys are only exploited by B. cicadellinicola to produce its proteins). © 2010 Cottret et al.
2010
01 Pubblicazione su rivista::01a Articolo in rivista
Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, Baumannia cicadellinicola and Sulcia muelleri, with their insect host, Homalodisca coagulata / Ludovic, Cottret; Paulo Vieira, Milreu; Vicente, Acuna; MARCHETTI SPACCAMELA, Alberto; Leen, Stougie; Charles H., Sagot Mf. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-734X. - ELETTRONICO. - 6:9(2010), p. e1000904. [10.1371/journal.pcbi.1000904]
File allegati a questo prodotto
File Dimensione Formato  
VE_2010_11573-356918.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 812.68 kB
Formato Adobe PDF
812.68 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/356918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact