We study a stochastic, continuous time model on a finite horizon for a firm that produces a single good. We model the production capacity as an Itô diffusion controlled by a nondecreasing process representing the cumulative investment. The firm aims to maximize its expected total net profit by choosing the optimal investment process. That is a singular stochastic control problem. We derive some first order conditions for optimality, and we characterize the optimal solution in terms of the base capacity process l(t), i.e., the unique solution of a representation problem in the spirit of Bank and El Karoui [P. Bank and N. El Karoui, Ann. Probab., 32(2004), pp. 1030-1067]. We show that the base capacity is deterministic and it is identified with the free boundary ŷ(t) of the associated optimal stopping problem when the coefficients of the controlled diffusion are deterministic functions of time. This is a novelty in the literature on finite horizon singular stochastic control problems. As a subproduct this result allows us to obtain an integral equation for the free boundary, which we explicitly solve in the infinite horizon case for a Cobb-Douglas production function and constant coefficients in the controlled capacity process. © 2014 Society for Industrial and Applied Mathematics.

IDENTIFYING THE FREE BOUNDARY OF A STOCHASTIC, IRREVERSIBLE INVESTMENT PROBLEM VIA THE BANK-EL KAROUI REPRESENTATION THEOREM / Chiarolla, Maria; Ferrari, Giorgio. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 52:2(2014), pp. 1048-1070. [10.1137/11085195x]

IDENTIFYING THE FREE BOUNDARY OF A STOCHASTIC, IRREVERSIBLE INVESTMENT PROBLEM VIA THE BANK-EL KAROUI REPRESENTATION THEOREM

CHIAROLLA, Maria;
2014

Abstract

We study a stochastic, continuous time model on a finite horizon for a firm that produces a single good. We model the production capacity as an Itô diffusion controlled by a nondecreasing process representing the cumulative investment. The firm aims to maximize its expected total net profit by choosing the optimal investment process. That is a singular stochastic control problem. We derive some first order conditions for optimality, and we characterize the optimal solution in terms of the base capacity process l(t), i.e., the unique solution of a representation problem in the spirit of Bank and El Karoui [P. Bank and N. El Karoui, Ann. Probab., 32(2004), pp. 1030-1067]. We show that the base capacity is deterministic and it is identified with the free boundary ŷ(t) of the associated optimal stopping problem when the coefficients of the controlled diffusion are deterministic functions of time. This is a novelty in the literature on finite horizon singular stochastic control problems. As a subproduct this result allows us to obtain an integral equation for the free boundary, which we explicitly solve in the infinite horizon case for a Cobb-Douglas production function and constant coefficients in the controlled capacity process. © 2014 Society for Industrial and Applied Mathematics.
2014
singular stochastic control; optimal stopping; base capacity; bank and el karoui's representation theorem; free boundary; irreversible investment
01 Pubblicazione su rivista::01a Articolo in rivista
IDENTIFYING THE FREE BOUNDARY OF A STOCHASTIC, IRREVERSIBLE INVESTMENT PROBLEM VIA THE BANK-EL KAROUI REPRESENTATION THEOREM / Chiarolla, Maria; Ferrari, Giorgio. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 52:2(2014), pp. 1048-1070. [10.1137/11085195x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/355725
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact