We provide a sufficient condition for the existence of a positive solution to -Delta u + V(vertical bar x vertical bar)u = u(p) in B-1, when p is large enough. Here B-1 is the unit ball of R-n, n >= 2, and we deal with both Neumann and Dirichlet homogeneous boundary conditions. The solution turns out to be a constrained minimum of the associated energy functional. As an application we show that in case V(vertical bar x vertical bar) >= 0, V not equivalent to 0 is smooth and p is sufficiently large, and the Neumann problem always admits a solution.

Positive constrained minimizers for supercritical problems in the ball / Grossi, Massimo; Benedetta, Noris. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 140:6(2012), pp. 2141-2154. [10.1090/s0002-9939-2011-11133-x]

Positive constrained minimizers for supercritical problems in the ball

GROSSI, Massimo;
2012

Abstract

We provide a sufficient condition for the existence of a positive solution to -Delta u + V(vertical bar x vertical bar)u = u(p) in B-1, when p is large enough. Here B-1 is the unit ball of R-n, n >= 2, and we deal with both Neumann and Dirichlet homogeneous boundary conditions. The solution turns out to be a constrained minimum of the associated energy functional. As an application we show that in case V(vertical bar x vertical bar) >= 0, V not equivalent to 0 is smooth and p is sufficiently large, and the Neumann problem always admits a solution.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
Positive constrained minimizers for supercritical problems in the ball / Grossi, Massimo; Benedetta, Noris. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 140:6(2012), pp. 2141-2154. [10.1090/s0002-9939-2011-11133-x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/354720
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact