In this paper, we extend previous work on geographic random forwarding (GeRaF) by considering a more efficient paradigm whereby on/off cycles are exploited and every node can participate to packet relaying, as long as it wakes up during any handshake procedure. The protocol is fully distributed, as routing decisions are made hop by hop based on geographic metrics and using a joint channel access/routing procedure, like in the first version of GeRaF. In addition, a previously defined analytical model for GeRaF is used to analyze the protocol, after extending it to cover the new channel access and relay selection procedure. The model is employed to find optimal choices for the parameters of the protocol, before comparing analytical results with ns2 simulations. Results confirm that the geographic paradigm remains a very good solution for energy-constrained, density-constrained, and latency-constrained networks, and that small yet very effective protocol optimizations can achieve remarkable performance improvements. Copyright (c) 2011 John Wiley & Sons, Ltd.
A detailed analytical and simulation study of geographic random forwarding / P., Casari; M., Nati; Petrioli, Chiara; M., Zorzi. - In: WIRELESS COMMUNICATIONS AND MOBILE COMPUTING. - ISSN 1530-8669. - STAMPA. - 13:10(2013), pp. 916-934. [10.1002/wcm.1152]
A detailed analytical and simulation study of geographic random forwarding
PETRIOLI, Chiara;
2013
Abstract
In this paper, we extend previous work on geographic random forwarding (GeRaF) by considering a more efficient paradigm whereby on/off cycles are exploited and every node can participate to packet relaying, as long as it wakes up during any handshake procedure. The protocol is fully distributed, as routing decisions are made hop by hop based on geographic metrics and using a joint channel access/routing procedure, like in the first version of GeRaF. In addition, a previously defined analytical model for GeRaF is used to analyze the protocol, after extending it to cover the new channel access and relay selection procedure. The model is employed to find optimal choices for the parameters of the protocol, before comparing analytical results with ns2 simulations. Results confirm that the geographic paradigm remains a very good solution for energy-constrained, density-constrained, and latency-constrained networks, and that small yet very effective protocol optimizations can achieve remarkable performance improvements. Copyright (c) 2011 John Wiley & Sons, Ltd.File | Dimensione | Formato | |
---|---|---|---|
VE_2013_11573-354500.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.