In recent years, neural network models have been widely used in the Civil Engineering field. Interesting enhancements may be obtained by re-examining this model from the Bayesian probability logic viewpoint. Using this approach, it will be shown that the conventional regularized learning approach can be derived as a particular approximation of the Bayesian framework. Network training is only a first level where Bayesian inference can be applied to neural networks. It can also be utilized in another three levels in a hierarchical fashion: for the optimization of the regularization terms, for data-based model selection, and to evaluate the relative importance of different inputs. In this paper, after a historical overview of the probability logic approach and its application in the field of neural network models, the existing literature is revisited and reorganized according to the enunciated four levels. Then, this framework is applied to develop a two-step strategy for the assessment of the integrity of a long-suspension bridge under ambient vibrations. In the first step of the proposed strategy, the occurrence of damage is detected and the damaged portion of the bridge is identified. In the second step, the specific damaged element is recognized and the intensity of damage is evaluated. The Bayesian framework is applied in both steps and the improvements in the results are discussed.

Bayesian neural networks for bridges integrity assessment / Arangio, Stefania; Beck, J. L.. - In: STRUCTURAL CONTROL & HEALTH MONITORING. - ISSN 1545-2255. - STAMPA. - 1:19(2012), pp. 3-21. [10.1002/stc.420]

Bayesian neural networks for bridges integrity assessment

ARANGIO, Stefania;
2012

Abstract

In recent years, neural network models have been widely used in the Civil Engineering field. Interesting enhancements may be obtained by re-examining this model from the Bayesian probability logic viewpoint. Using this approach, it will be shown that the conventional regularized learning approach can be derived as a particular approximation of the Bayesian framework. Network training is only a first level where Bayesian inference can be applied to neural networks. It can also be utilized in another three levels in a hierarchical fashion: for the optimization of the regularization terms, for data-based model selection, and to evaluate the relative importance of different inputs. In this paper, after a historical overview of the probability logic approach and its application in the field of neural network models, the existing literature is revisited and reorganized according to the enunciated four levels. Then, this framework is applied to develop a two-step strategy for the assessment of the integrity of a long-suspension bridge under ambient vibrations. In the first step of the proposed strategy, the occurrence of damage is detected and the damaged portion of the bridge is identified. In the second step, the specific damaged element is recognized and the intensity of damage is evaluated. The Bayesian framework is applied in both steps and the improvements in the results are discussed.
2012
bayesian neural networks; probability logic approach; integrity assessment; long-span bridges; damage identification; model selection; automatic relevance determination
01 Pubblicazione su rivista::01a Articolo in rivista
Bayesian neural networks for bridges integrity assessment / Arangio, Stefania; Beck, J. L.. - In: STRUCTURAL CONTROL & HEALTH MONITORING. - ISSN 1545-2255. - STAMPA. - 1:19(2012), pp. 3-21. [10.1002/stc.420]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/344256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 61
social impact