We provide a technique to compute the Euler–Poincaré characteristic of a class of projective varieties called quiver Grassmannians. This technique applies to quiver Grassmannians associated with “orientable string modules”. As an application we explicitly compute the Euler–Poincaré characteristic of quiver Grassmannians associated with indecomposable pre-projective, pre-injective and regular homogeneous representations of a quiver of type affine-Ap. For p = 1, this approach provides another proof of a result due to Caldero and Zelevinsky (in Mosc. Math. J. 6(3):411– 429, 2006).

Quiver Grassmannians associated with string modules / CERULLI IRELLI, Giovanni. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - 33:2(2011), pp. 259-276. [10.1007/s10801-010-0244-6]

Quiver Grassmannians associated with string modules

CERULLI IRELLI, GIOVANNI
2011

Abstract

We provide a technique to compute the Euler–Poincaré characteristic of a class of projective varieties called quiver Grassmannians. This technique applies to quiver Grassmannians associated with “orientable string modules”. As an application we explicitly compute the Euler–Poincaré characteristic of quiver Grassmannians associated with indecomposable pre-projective, pre-injective and regular homogeneous representations of a quiver of type affine-Ap. For p = 1, this approach provides another proof of a result due to Caldero and Zelevinsky (in Mosc. Math. J. 6(3):411– 429, 2006).
2011
Quiver Grassmannians; cluster algebras; affine quivers; Mathematics (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Quiver Grassmannians associated with string modules / CERULLI IRELLI, Giovanni. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - 33:2(2011), pp. 259-276. [10.1007/s10801-010-0244-6]
File allegati a questo prodotto
File Dimensione Formato  
Cerulli_JOAC_2011.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 459.68 kB
Formato Adobe PDF
459.68 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/337887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact