Dynamic systems in non-Archimedean number fields (i.e., fields with non-Archimedean valuations) are studied. Results are obtained for the fields of p-adic numbers and complex p-adic numbers. Simple p-adic dynamic systems have a very rich structure-attractors, Siegel disks, cycles, and a new structure called a "fuzzy cycle." The prime number p plays the role of a parameter of the p-adic dynamic system. Changing p radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.

p-adic dynamic systems / S., Albeverio; A., Khrennikov; Tirozzi, Benedetto; S., De Smedt. - In: THEORETICAL AND MATHEMATICAL PHYSICS. - ISSN 0040-5779. - 114:3(1998), pp. 276-287.

p-adic dynamic systems

TIROZZI, Benedetto;
1998

Abstract

Dynamic systems in non-Archimedean number fields (i.e., fields with non-Archimedean valuations) are studied. Results are obtained for the fields of p-adic numbers and complex p-adic numbers. Simple p-adic dynamic systems have a very rich structure-attractors, Siegel disks, cycles, and a new structure called a "fuzzy cycle." The prime number p plays the role of a parameter of the p-adic dynamic system. Changing p radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/31062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 35
social impact