We construct three infinite families of cyclic difference sets, using monomial hyperovals in a desarguesian projective plane of even order. These difference sets give rise to cyclic Hadamard designs, which have the same parameters as the designs of points and hyperplanes of a projective geometry over the field with two elements. Moreover, they are substructures of the Hadamard design that one can associate with a hyperoval in a projective plane of even order.

Difference sets and hyperovals / Maschietti, Antonio. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - STAMPA. - 14:(1998), pp. 89-98.

Difference sets and hyperovals

MASCHIETTI, Antonio
1998

Abstract

We construct three infinite families of cyclic difference sets, using monomial hyperovals in a desarguesian projective plane of even order. These difference sets give rise to cyclic Hadamard designs, which have the same parameters as the designs of points and hyperplanes of a projective geometry over the field with two elements. Moreover, they are substructures of the Hadamard design that one can associate with a hyperoval in a projective plane of even order.
1998
difference set; hyperoval; Hadamard design
01 Pubblicazione su rivista::01a Articolo in rivista
Difference sets and hyperovals / Maschietti, Antonio. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - STAMPA. - 14:(1998), pp. 89-98.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/29751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact