Kiwifruit (Actinidia deliciosa) is a dioecious vine whose staminate and pistillate flowers nonetheless develop non-functional reproductive structures of the opposite sex. Ubiquitin is a small, highly conserved protein found in all eucaryotes: a covalent ATP-dependent attachment of ubiquitin marks proteins for degradation. In the present paper, we used immunoblotting to investigate the presence of free ubiquitin and ubiquitin conjugates during pollen development in male (androfertile) and in female (androsterile) genotypes of kiwifruit. In the male, several high molecular mass protein conjugates were present throughout development. On the contrary, such a pattern characterized only early stages of pollen from the female genotype, where conjugates progressively disappeared, until they were detectable only in trace amounts at anthesis. The highest content of conjugates in the male genotype was observed when microspores were approaching the first mitosis, Free ubiquitin increased continuously during development of the male microgametophyte so that mature pollen contained considerable amounts of the ubiquitin monomer at the time of its release from the anther, By contrast, only low levels were detectable in the degenerating microspores in the pistillate flowers. In vitro experiments using labeled ubiquitin indicated that early-uninucleate microspores of the female genotype had a much higher conjugation rate Ban those of the male genotype at the same stage. However, after feeding alpha-lactalbumin as exogenous substrate, the rate of ubiquitin conjugation strongly increased and was quite similar in both sexes. Nuclear features of pollen development in both genotypes are also described. The nucleus progressively degenerated in the microspores of the pistillate flowers starting from the early-uninucleate stage, in parallel with the progressive decrease in ubiquitin content and activity, At anthesis, the microspores in the pistillate flowers either had no nucleus or showed only traces of chromatin, Thus, the ubiquitin system seems to play an important role in protein turnover occurring during the normal developmental pathway of the kiwifruit microgametophyte, while it was mainly involved in regressive events related to microspore degeneration in the female genotype.

Development-related changes of protein ubiquitination in pollen from male and female kiwifruit (Actinidia deliciosa) / Scoccianti, Speranza; Crinelli, Calzoni; Biasi, ; Altamura, Maria Maddalena; Bagni,. - In: PHYSIOLOGIA PLANTARUM. - ISSN 0031-9317. - STAMPA. - 107:1(1999), pp. 128-135. [10.1034/j.1399-3054.1999.100117.x]

Development-related changes of protein ubiquitination in pollen from male and female kiwifruit (Actinidia deliciosa)

ALTAMURA, Maria Maddalena;
1999

Abstract

Kiwifruit (Actinidia deliciosa) is a dioecious vine whose staminate and pistillate flowers nonetheless develop non-functional reproductive structures of the opposite sex. Ubiquitin is a small, highly conserved protein found in all eucaryotes: a covalent ATP-dependent attachment of ubiquitin marks proteins for degradation. In the present paper, we used immunoblotting to investigate the presence of free ubiquitin and ubiquitin conjugates during pollen development in male (androfertile) and in female (androsterile) genotypes of kiwifruit. In the male, several high molecular mass protein conjugates were present throughout development. On the contrary, such a pattern characterized only early stages of pollen from the female genotype, where conjugates progressively disappeared, until they were detectable only in trace amounts at anthesis. The highest content of conjugates in the male genotype was observed when microspores were approaching the first mitosis, Free ubiquitin increased continuously during development of the male microgametophyte so that mature pollen contained considerable amounts of the ubiquitin monomer at the time of its release from the anther, By contrast, only low levels were detectable in the degenerating microspores in the pistillate flowers. In vitro experiments using labeled ubiquitin indicated that early-uninucleate microspores of the female genotype had a much higher conjugation rate Ban those of the male genotype at the same stage. However, after feeding alpha-lactalbumin as exogenous substrate, the rate of ubiquitin conjugation strongly increased and was quite similar in both sexes. Nuclear features of pollen development in both genotypes are also described. The nucleus progressively degenerated in the microspores of the pistillate flowers starting from the early-uninucleate stage, in parallel with the progressive decrease in ubiquitin content and activity, At anthesis, the microspores in the pistillate flowers either had no nucleus or showed only traces of chromatin, Thus, the ubiquitin system seems to play an important role in protein turnover occurring during the normal developmental pathway of the kiwifruit microgametophyte, while it was mainly involved in regressive events related to microspore degeneration in the female genotype.
1999
01 Pubblicazione su rivista::01a Articolo in rivista
Development-related changes of protein ubiquitination in pollen from male and female kiwifruit (Actinidia deliciosa) / Scoccianti, Speranza; Crinelli, Calzoni; Biasi, ; Altamura, Maria Maddalena; Bagni,. - In: PHYSIOLOGIA PLANTARUM. - ISSN 0031-9317. - STAMPA. - 107:1(1999), pp. 128-135. [10.1034/j.1399-3054.1999.100117.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/296
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact