The existence of 2 -dimensional invariant tori and their bifurcation in 3-dimensional invariant tori are investigated for a family of (non- hamiltonian) differential sistems inR4. Techniques inspired to the « K.A.M. theory » are used to identify « paths of bifurcation » in the parameters space. © 1989 Fondazione Annali di Matematica Pura ed Applicata.
BIFURCATION FROM 2-DIMENSIONAL TO 3-DIMENSIONAL INVARIANT TORI / C., Maffei; Negrini, Piero; M., Scalia. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 155:1(1989), pp. 117-136. [10.1007/bf01765937]
BIFURCATION FROM 2-DIMENSIONAL TO 3-DIMENSIONAL INVARIANT TORI
NEGRINI, Piero;
1989
Abstract
The existence of 2 -dimensional invariant tori and their bifurcation in 3-dimensional invariant tori are investigated for a family of (non- hamiltonian) differential sistems inR4. Techniques inspired to the « K.A.M. theory » are used to identify « paths of bifurcation » in the parameters space. © 1989 Fondazione Annali di Matematica Pura ed Applicata.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.