In a previous paper (Parisi G. and Sourlas N., Phys. Rev. Lett., 89 (2002) 257204) we found that in the random field Ising model at zero temperature in three dimensions the correlation length is not self-averaging near the critical point and that the violation of self-averaging is maximal-This is due to the formation of bound states in the underlying field theory. We present a similar study for the case of disordered Potts and Ising ferromagnets in two dimensions near the critical temperature. In the random Potts model the correlation length is not self-averaging near the critical temperature but the violation of self-averaging is weaker than in the random field case. In the random Ising model we find still weaker violations of self-averaging and we cannot rule out the possibility of the restoration of self-averaging in the infinite volume limit.
Scale invariance and self-averaging in disordered systems / Parisi, Giorgio; M., Picco; N., Sourlas. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 66:4(2004), pp. 465-470. [10.1209/epl/i2004-10014-0]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Scale invariance and self-averaging in disordered systems | |
Autori: | ||
Data di pubblicazione: | 2004 | |
Rivista: | ||
Citazione: | Scale invariance and self-averaging in disordered systems / Parisi, Giorgio; M., Picco; N., Sourlas. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 66:4(2004), pp. 465-470. [10.1209/epl/i2004-10014-0] | |
Handle: | http://hdl.handle.net/11573/2770 | |
Appartiene alla tipologia: | 01a Articolo in rivista |