In this paper we study the Hamilton-Jacobi equation H(x, Du) = F(x) in a bounded locally Lipschitz domain Omega --> R-n with Dirichlet boundary conditions. H and f are nonnegative continuous functions and f can have a very general zero set. A characterization of maximal subsolutions by means of viscosity test functions is obtained and some stability results are proved.
Maximal subsolutions for a class of degenerate Hamilton-Jacobi equations / Siconolfi, Antonio; Camilli, Fabio. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 48:(1999), pp. 1111-1131.
Maximal subsolutions for a class of degenerate Hamilton-Jacobi equations
SICONOLFI, Antonio;CAMILLI, FABIO
1999
Abstract
In this paper we study the Hamilton-Jacobi equation H(x, Du) = F(x) in a bounded locally Lipschitz domain Omega --> R-n with Dirichlet boundary conditions. H and f are nonnegative continuous functions and f can have a very general zero set. A characterization of maximal subsolutions by means of viscosity test functions is obtained and some stability results are proved.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Camilli_Maximal-subsolutions_2012.pdf.pdf.pdf
solo gestori archivio
Note: nessuno
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
220.2 kB
Formato
Adobe PDF
|
220.2 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.