We consider minimization problems of the form \[ \min_{u\in \varphi +\Wuu(\Omega)}\int_\Omega [f(Du(x))-u(x)]\, dx \] where $\Omega\subseteq \R^N$ is a bounded convex open set, and the Borel function $f\colon \R^N \to [0, +\infty]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega$ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton--Jacobi equation provides a minimizer for the integral functional.

Geometric constraints on the domain for a class of minimum problems / Crasta, Graziano; Malusa, Annalisa. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 9:(2003), pp. 125-133. [10.1051/cocv:2003003]

Geometric constraints on the domain for a class of minimum problems

CRASTA, Graziano;MALUSA, ANNALISA
2003

Abstract

We consider minimization problems of the form \[ \min_{u\in \varphi +\Wuu(\Omega)}\int_\Omega [f(Du(x))-u(x)]\, dx \] where $\Omega\subseteq \R^N$ is a bounded convex open set, and the Borel function $f\colon \R^N \to [0, +\infty]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega$ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton--Jacobi equation provides a minimizer for the integral functional.
2003
01 Pubblicazione su rivista::01a Articolo in rivista
Geometric constraints on the domain for a class of minimum problems / Crasta, Graziano; Malusa, Annalisa. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 9:(2003), pp. 125-133. [10.1051/cocv:2003003]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/256062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact