In this paper, a procedure is presented which allows the optimal reconstruction of images from blurred noisy data. The procedure relies on a general Bayesian approach, which makes proper use of all the available information. Special attention is devoted to the informative content of the edges; thus, a preprocessing phase is included, with the aim of estimating the jump sizes in the gray level. The optimization phase follows; existence and uniqueness of the solution is secured. The procedure is tested against simple simulated data and real data.

Global optimal image reconstruction from blurred noisy data by a Bayesian approach / Bruni, Carlo; Bruni, Renato; DE SANTIS, Alberto; Iacoviello, Daniela; G., Koch. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - STAMPA. - 115:1(2002), pp. 67-96. [10.1023/a:1019624913077]

Global optimal image reconstruction from blurred noisy data by a Bayesian approach

BRUNI, Carlo;BRUNI, Renato;DE SANTIS, Alberto;IACOVIELLO, Daniela;
2002

Abstract

In this paper, a procedure is presented which allows the optimal reconstruction of images from blurred noisy data. The procedure relies on a general Bayesian approach, which makes proper use of all the available information. Special attention is devoted to the informative content of the edges; thus, a preprocessing phase is included, with the aim of estimating the jump sizes in the gray level. The optimization phase follows; existence and uniqueness of the solution is secured. The procedure is tested against simple simulated data and real data.
2002
bayesian modeling; global constrained optimization; image analysis; wavelet processing.
01 Pubblicazione su rivista::01a Articolo in rivista
Global optimal image reconstruction from blurred noisy data by a Bayesian approach / Bruni, Carlo; Bruni, Renato; DE SANTIS, Alberto; Iacoviello, Daniela; G., Koch. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - STAMPA. - 115:1(2002), pp. 67-96. [10.1023/a:1019624913077]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/255900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact