Because sensory systems use different spatial coordinate frames, cross-modal sensory integration and sensory-motor coordinate transformations must occur to build integrated spatial representations. Multimodal neurons using non-retinal body-centred reference frames are found in the posterior parietal and frontal cortices of monkeys. We used functional magnetic resonance imaging to reveal regions of the human brain using body-centred coordinates to code the spatial position of both visual and somatic sensory stimuli. Participants determined whether a visible vertical bar (visual modality) or a location touched by the right index finger (somatic sensory modality) lay to the left or to the right of their body mid-sagittal plane. This task was compared to a spatial control task having the same stimuli and motor responses and comparable difficulty, but not requiring body-centred coding of stimulus position. In both sensory modalities, the body-centred coding task activated a bilateral fronto-parietal network, though more extensively in the right hemisphere, to include posterior parietal regions around the intraparietal sulcus and frontal regions around the precentral and superior frontal sulci, the inferior frontal gyrus and the superior frontal gyrus on the medial wall. The occipito-temporal junction and other extrastriate regions exhibited bilateral activation enhancement related to body-centred coding when driven by visual stimuli. We conclude that posterior parietal and frontal regions of humans, as in monkeys, appear to provide multimodal integrated spatial representations in body-centred coordinates, and these data furnish the first indication of such processing networks in the human brain.

Spatial coding of visual and somatic sensory information in body-centered coordinates / Galati, Gaspare; Committeri, G; Senes, Jn; Pizzamiglio, Luigi Remo. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 14:(2001), pp. 737-746. [10.1046/j.0953-816x.2001.01674.x]

Spatial coding of visual and somatic sensory information in body-centered coordinates.

GALATI, Gaspare;PIZZAMIGLIO, Luigi Remo
2001

Abstract

Because sensory systems use different spatial coordinate frames, cross-modal sensory integration and sensory-motor coordinate transformations must occur to build integrated spatial representations. Multimodal neurons using non-retinal body-centred reference frames are found in the posterior parietal and frontal cortices of monkeys. We used functional magnetic resonance imaging to reveal regions of the human brain using body-centred coordinates to code the spatial position of both visual and somatic sensory stimuli. Participants determined whether a visible vertical bar (visual modality) or a location touched by the right index finger (somatic sensory modality) lay to the left or to the right of their body mid-sagittal plane. This task was compared to a spatial control task having the same stimuli and motor responses and comparable difficulty, but not requiring body-centred coding of stimulus position. In both sensory modalities, the body-centred coding task activated a bilateral fronto-parietal network, though more extensively in the right hemisphere, to include posterior parietal regions around the intraparietal sulcus and frontal regions around the precentral and superior frontal sulci, the inferior frontal gyrus and the superior frontal gyrus on the medial wall. The occipito-temporal junction and other extrastriate regions exhibited bilateral activation enhancement related to body-centred coding when driven by visual stimuli. We conclude that posterior parietal and frontal regions of humans, as in monkeys, appear to provide multimodal integrated spatial representations in body-centred coordinates, and these data furnish the first indication of such processing networks in the human brain.
2001
01 Pubblicazione su rivista::01a Articolo in rivista
Spatial coding of visual and somatic sensory information in body-centered coordinates / Galati, Gaspare; Committeri, G; Senes, Jn; Pizzamiglio, Luigi Remo. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 14:(2001), pp. 737-746. [10.1046/j.0953-816x.2001.01674.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/255203
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 95
social impact