We consider the nonlinear convex energy forms ${\Cal E}^(p)$ on the Koch curve $K$ and we prove that the corresponding domains coincide with the spaces {\it Lip}$_{\alpha, D_f} (p, \infty, K)$. Then we give a precise interpretation of the smoothness index $\alpha$ in terms of the structural constants of the fractal.
Nonlinear energy forms and Lipschitz spaces on the Koch curve / Capitanelli, Raffaela; Lancia, Maria Rosaria. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 9:(2002), pp. 245-257.
Nonlinear energy forms and Lipschitz spaces on the Koch curve
CAPITANELLI, Raffaela;LANCIA, Maria Rosaria
2002
Abstract
We consider the nonlinear convex energy forms ${\Cal E}^(p)$ on the Koch curve $K$ and we prove that the corresponding domains coincide with the spaces {\it Lip}$_{\alpha, D_f} (p, \infty, K)$. Then we give a precise interpretation of the smoothness index $\alpha$ in terms of the structural constants of the fractal.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.