We have isolated the KlLSM4 gene as a multicopy suppressor of a Kluyveromyces lactis mutant which shows a rag(-) phenotype (resistance to antimycin A on glucose). This gene is homologous to the ScLSM4 of Saccharomyces cerevisiae, which codes for an essential 187 amino acid protein containing Sm-like domains. These motifs are present in the evolutionarily conserved family of the Sm-like proteins, which are involved in a large number of cellular processes, including pre-mRNA splicing and mRNA decapping. We demonstrated that the first 72 amino acids of KlLsm4p, which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells lacking the wild-type protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of cell viability in the stationary phase. The KlLSM4 sequence has been deposited in the EMBL Data library under Accession No. AJ311719.
Isolation and study of KlLSM4, a Kluyveromyces lactis gene homologous to the essential gene LSM4 of Saccharomyces cerevisiae / Mazzoni, Cristina; Falcone, Claudio. - In: YEAST. - ISSN 0749-503X. - 18:(2001), pp. 1249-1256. [10.1002/yea.772]
Isolation and study of KlLSM4, a Kluyveromyces lactis gene homologous to the essential gene LSM4 of Saccharomyces cerevisiae.
MAZZONI, Cristina;FALCONE, Claudio
2001
Abstract
We have isolated the KlLSM4 gene as a multicopy suppressor of a Kluyveromyces lactis mutant which shows a rag(-) phenotype (resistance to antimycin A on glucose). This gene is homologous to the ScLSM4 of Saccharomyces cerevisiae, which codes for an essential 187 amino acid protein containing Sm-like domains. These motifs are present in the evolutionarily conserved family of the Sm-like proteins, which are involved in a large number of cellular processes, including pre-mRNA splicing and mRNA decapping. We demonstrated that the first 72 amino acids of KlLsm4p, which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells lacking the wild-type protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of cell viability in the stationary phase. The KlLSM4 sequence has been deposited in the EMBL Data library under Accession No. AJ311719.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.