The atrial natriuretic peptide (ANP), a component of the natriuretic peptide family, was discovered in 1981 when de Bold and his coworkers observed a natriuretic effect induced by infusion of atrial extracts in rats. Subsequently, an impressive amount of research has been carried out in order to identify the structure of the active peptide and its receptors, to characterize the biological functions of ANP and its involvement in the pathophysiology of diseases and, finally, its direct contributory role in the pathogenesis of some cardiovascular disorders. ANP plays a key role in the regulation of salt and water balance, as well as of blood pressure homeostasis. In addition, ANP is involved in the pathophysiology of hypertension and heart failure, and exerts a cellular antiproliferative effect in the cardiovascular system. More recently, a direct contributory role of ANP in the development of hypertension and of cerebrovascular disorders has been suggested by the use of molecular genetic approaches. Therefore, our understanding of the patho physiologic relevance of ANP has changed over time, finally leading to the identification of ANP as a potential determinant of cardiovascular diseases, rather than as a simple marker of cardiac and vascular dysfunctions. This novel view of ANP may open interesting research pathways. (C) 2001 Lippincott Williams & Wilkins.
The atrial natriuretic peptide: a changing view / Rubattu, Speranza Donatella; Volpe, Massimo. - In: JOURNAL OF HYPERTENSION. - ISSN 0263-6352. - 19:11(2001), pp. 1923-1931. [10.1097/00004872-200111000-00001]
The atrial natriuretic peptide: a changing view
RUBATTU, Speranza Donatella;VOLPE, Massimo
2001
Abstract
The atrial natriuretic peptide (ANP), a component of the natriuretic peptide family, was discovered in 1981 when de Bold and his coworkers observed a natriuretic effect induced by infusion of atrial extracts in rats. Subsequently, an impressive amount of research has been carried out in order to identify the structure of the active peptide and its receptors, to characterize the biological functions of ANP and its involvement in the pathophysiology of diseases and, finally, its direct contributory role in the pathogenesis of some cardiovascular disorders. ANP plays a key role in the regulation of salt and water balance, as well as of blood pressure homeostasis. In addition, ANP is involved in the pathophysiology of hypertension and heart failure, and exerts a cellular antiproliferative effect in the cardiovascular system. More recently, a direct contributory role of ANP in the development of hypertension and of cerebrovascular disorders has been suggested by the use of molecular genetic approaches. Therefore, our understanding of the patho physiologic relevance of ANP has changed over time, finally leading to the identification of ANP as a potential determinant of cardiovascular diseases, rather than as a simple marker of cardiac and vascular dysfunctions. This novel view of ANP may open interesting research pathways. (C) 2001 Lippincott Williams & Wilkins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.