In the past 20 years, several metrics have been developed to quantify various aspects of landscape structure and diversity in space and time, and most have been tested on grid-based thematic maps. Once landscape patterns have been quantified, their effects on ecological functions can be explained if the expected pattern in the absence of specific processes is known. This type of expected pattern has been termed a neutral landscape model. In the landscape-ecological literature, researchers traditionally adopt random and fractal computer-generated neutral landscape models to verify the expected relationship between a given ecological process and landscape spatial heterogeneity. Conversely, little attention has been devoted to distribution patterns of potential natural vegetation (PNV) as an ecological baseline for the evaluation of pattern-process interactions at the landscape scale. As an application for demonstration, we propose a neutral model based on PNV as a possible reference for a quantitative comparison with actual vegetation (ACV) distribution. Within this context, we introduce an evenness-like index termed 'actual-to-potential entropy ratio' (HA/P = HACV/HPNV, where H is Shannon's entropy). Results show that, despite the hypothetical character of most PNV maps, the use of PNV distribution as a baseline for a quantitative comparison with ACV distribution may represent a first step towards a general model for the evaluation of the effects of disturbance on vegetation patterns and diversity.

Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation / Ricotta, Carlo; Maria Laura, Carranza; Avena, Giancarlo; Blasi, Carlo. - In: APPLIED VEGETATION SCIENCE. - ISSN 1402-2001. - STAMPA. - 3:2(2000), pp. 157-162. [10.2307/1478994]

Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation

RICOTTA, Carlo;AVENA, Giancarlo;BLASI, Carlo
2000

Abstract

In the past 20 years, several metrics have been developed to quantify various aspects of landscape structure and diversity in space and time, and most have been tested on grid-based thematic maps. Once landscape patterns have been quantified, their effects on ecological functions can be explained if the expected pattern in the absence of specific processes is known. This type of expected pattern has been termed a neutral landscape model. In the landscape-ecological literature, researchers traditionally adopt random and fractal computer-generated neutral landscape models to verify the expected relationship between a given ecological process and landscape spatial heterogeneity. Conversely, little attention has been devoted to distribution patterns of potential natural vegetation (PNV) as an ecological baseline for the evaluation of pattern-process interactions at the landscape scale. As an application for demonstration, we propose a neutral model based on PNV as a possible reference for a quantitative comparison with actual vegetation (ACV) distribution. Within this context, we introduce an evenness-like index termed 'actual-to-potential entropy ratio' (HA/P = HACV/HPNV, where H is Shannon's entropy). Results show that, despite the hypothetical character of most PNV maps, the use of PNV distribution as a baseline for a quantitative comparison with ACV distribution may represent a first step towards a general model for the evaluation of the effects of disturbance on vegetation patterns and diversity.
2000
evenness; map; shannon's entropy function; shannon’s entropy function; landscape metrics; vegetation pattern; landscape model
01 Pubblicazione su rivista::01a Articolo in rivista
Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation / Ricotta, Carlo; Maria Laura, Carranza; Avena, Giancarlo; Blasi, Carlo. - In: APPLIED VEGETATION SCIENCE. - ISSN 1402-2001. - STAMPA. - 3:2(2000), pp. 157-162. [10.2307/1478994]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/254209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 28
social impact