This short review is mostly concerned with the work carried out in Rome on the copper amine oxidase from bovine serum (BSAO). The first target was the copper oxidation state and its relationship with the organic cofactor. It was found that copper is not reduced on reaction with amines under anaerobic conditions or along the catalytic cycle and that it is not within bonding distance of the quinone cofactor. The copper stability in the oxidised state was supported by BSAO ability to oxidise benzylhydrazine, a slow substrate, in the presence of N,N-diethyldithiocarbamate (DDC) and by the substantial catalytic activity of Co(2+)-substituted BSAO. Parallel work established that only one subunit of the dimeric enzyme readily binds reagents of the carbonyl group. Flexible hydrazides with a long aromatic tail were found to be highly specific inhibitors, suggesting the presence of an extended hydrophobic region at the catalytic site. A study by stopped-flow transient spectroscopy and steady state kinetics led to the formulation of a simplified, yet complete and consistent, catalytic mechanism for BSAO that was compared with that available for lentil seedling amine oxidase (LSAO). As in other copper amine oxidases, BSAO is inactivated by H(2)O(2) produced in the catalytic reaction, while the cofactor is stabilised in its reduced state. A conserved tyrosine hydrogen-bonded to the cofactor might be oxidised.
Is the catalytic mechanism of bacteria, plant, and mammal copper-TPQ amine oxidases identical? / Pietrangeli, Paola; Nocera, S; Mondovi', Bruno; Morpurgo, L.. - In: BIOCHIMICA ET BIOPHYSICA ACTA. - ISSN 0006-3002. - STAMPA. - 1647:(2003), pp. 152-156. [10.1016/S1570-9639(03)00083-9]
Is the catalytic mechanism of bacteria, plant, and mammal copper-TPQ amine oxidases identical?
PIETRANGELI, Paola;MONDOVI', Bruno;
2003
Abstract
This short review is mostly concerned with the work carried out in Rome on the copper amine oxidase from bovine serum (BSAO). The first target was the copper oxidation state and its relationship with the organic cofactor. It was found that copper is not reduced on reaction with amines under anaerobic conditions or along the catalytic cycle and that it is not within bonding distance of the quinone cofactor. The copper stability in the oxidised state was supported by BSAO ability to oxidise benzylhydrazine, a slow substrate, in the presence of N,N-diethyldithiocarbamate (DDC) and by the substantial catalytic activity of Co(2+)-substituted BSAO. Parallel work established that only one subunit of the dimeric enzyme readily binds reagents of the carbonyl group. Flexible hydrazides with a long aromatic tail were found to be highly specific inhibitors, suggesting the presence of an extended hydrophobic region at the catalytic site. A study by stopped-flow transient spectroscopy and steady state kinetics led to the formulation of a simplified, yet complete and consistent, catalytic mechanism for BSAO that was compared with that available for lentil seedling amine oxidase (LSAO). As in other copper amine oxidases, BSAO is inactivated by H(2)O(2) produced in the catalytic reaction, while the cofactor is stabilised in its reduced state. A conserved tyrosine hydrogen-bonded to the cofactor might be oxidised.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.