We have previously shown that myogenesis induction by Arg8-vasopressin (AVP) in L6 rat myoblasts involves a sustained stimulation of type 4 cAMP-phosphodiesterase. In this model, we observed that a transient cAMP generation occurs in the minutes following AVP addition. Evidence suggests that cAMP generation is due to the prostaglandins produced in response to AVP binding to V1a receptors and subsequent activation of phospholipase A2. The early cAMP increase was effective in activating cAMP-dependent protein kinase (PKA) and increasing phosphorylation of CREB transcription factor. Inhibition of PKA by compound H89 prior to AVP addition led to a significant reduction of expression of the differentiation marker creatine kinase, whereas H89 added 1-5 h after AVP had no significant effect. Furthermore, PKA inhibition 24 h after the beginning of AVP treatment potentiated differentiation. This shows that both an early activation and a later down-regulation of the cAMP pathway are required for AVP induction of myogenesis. Because phosphodiesterase PDE4D3 overexpressed in L6 cells lost its ability to potentiate AVP-induced differentiation when mutated and rendered insensitive to PKA phosphorylation and activation, we hypothesize that the early cAMP increase is required to trigger the down-regulation of cAMP pathway through stimulation of phosphodiesterase.

A bimodal modulation of the cAMP pathway is involved in the controlof myogenic differentiation in L6 cells / Naro, Fabio; DE ARCANGELIS, Vania; C., Sette; C., Ambrosio; H., Komati; Molinaro, Mario; Adamo, Sergio; G., Nemoz. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 278:49(2003), pp. 49308-49315. [10.1074/jbc.M306941200]

A bimodal modulation of the cAMP pathway is involved in the controlof myogenic differentiation in L6 cells

NARO, Fabio;DE ARCANGELIS, VANIA;MOLINARO, Mario;ADAMO, Sergio;
2003

Abstract

We have previously shown that myogenesis induction by Arg8-vasopressin (AVP) in L6 rat myoblasts involves a sustained stimulation of type 4 cAMP-phosphodiesterase. In this model, we observed that a transient cAMP generation occurs in the minutes following AVP addition. Evidence suggests that cAMP generation is due to the prostaglandins produced in response to AVP binding to V1a receptors and subsequent activation of phospholipase A2. The early cAMP increase was effective in activating cAMP-dependent protein kinase (PKA) and increasing phosphorylation of CREB transcription factor. Inhibition of PKA by compound H89 prior to AVP addition led to a significant reduction of expression of the differentiation marker creatine kinase, whereas H89 added 1-5 h after AVP had no significant effect. Furthermore, PKA inhibition 24 h after the beginning of AVP treatment potentiated differentiation. This shows that both an early activation and a later down-regulation of the cAMP pathway are required for AVP induction of myogenesis. Because phosphodiesterase PDE4D3 overexpressed in L6 cells lost its ability to potentiate AVP-induced differentiation when mutated and rendered insensitive to PKA phosphorylation and activation, we hypothesize that the early cAMP increase is required to trigger the down-regulation of cAMP pathway through stimulation of phosphodiesterase.
2003
01 Pubblicazione su rivista::01a Articolo in rivista
A bimodal modulation of the cAMP pathway is involved in the controlof myogenic differentiation in L6 cells / Naro, Fabio; DE ARCANGELIS, Vania; C., Sette; C., Ambrosio; H., Komati; Molinaro, Mario; Adamo, Sergio; G., Nemoz. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 278:49(2003), pp. 49308-49315. [10.1074/jbc.M306941200]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/253498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact