We study an incompressible non-viscous #uid with axial symmetry without swirl, in the case when the vorticity is supported in an annulus. It is well known that there exist particular initial data for which the Euler evolution reduces to a translation with a constant speed. In this paper we prove a similar property for any initial condition in the limit situation in which the initial vorticity is sharply concentrated.

On the motion of a vortex ring with a sharply concentrated vorticity / Benedetto, Dario; Caglioti, Emanuele; Marchioro, Carlo. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 23:(2000), pp. 147-168. [10.1002/(SICI)1099-1476(20000125)23:2<147::AID-MMA108>3.0.CO;2-J]

On the motion of a vortex ring with a sharply concentrated vorticity

BENEDETTO, Dario;CAGLIOTI, Emanuele;MARCHIORO, Carlo
2000

Abstract

We study an incompressible non-viscous #uid with axial symmetry without swirl, in the case when the vorticity is supported in an annulus. It is well known that there exist particular initial data for which the Euler evolution reduces to a translation with a constant speed. In this paper we prove a similar property for any initial condition in the limit situation in which the initial vorticity is sharply concentrated.
2000
Euler Equation; Vortex Ring.
01 Pubblicazione su rivista::01a Articolo in rivista
On the motion of a vortex ring with a sharply concentrated vorticity / Benedetto, Dario; Caglioti, Emanuele; Marchioro, Carlo. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 23:(2000), pp. 147-168. [10.1002/(SICI)1099-1476(20000125)23:2<147::AID-MMA108>3.0.CO;2-J]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_On-the-motion_2000.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 157.39 kB
Formato Adobe PDF
157.39 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/251300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact