The edge detection problem in blurred and noisy 2-D signals is dealt with. An adaptive signal processing algorithm is proposed which marks edge points according to an hypothesis test which compares the likelihoods of two models describing the local signal behaviour in the two cases of absence/presence of an edge. The two models are identi"ed by a regularized least squares estimation algorithm, obtaining a numerically e$cient procedure, quite robust with respect to additive noise and blurr perturbation. No global thresholding or data pre"ltering is required.

An efficient adaptive algorithm for edge detection based on the likelihood ratio test / DE SANTIS, Alberto; Iacoviello, Daniela. - In: INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING. - ISSN 0890-6327. - STAMPA. - 16:4(2002), pp. 289-308. [10.1002/acs.701]

An efficient adaptive algorithm for edge detection based on the likelihood ratio test

DE SANTIS, Alberto;IACOVIELLO, Daniela
2002

Abstract

The edge detection problem in blurred and noisy 2-D signals is dealt with. An adaptive signal processing algorithm is proposed which marks edge points according to an hypothesis test which compares the likelihoods of two models describing the local signal behaviour in the two cases of absence/presence of an edge. The two models are identi"ed by a regularized least squares estimation algorithm, obtaining a numerically e$cient procedure, quite robust with respect to additive noise and blurr perturbation. No global thresholding or data pre"ltering is required.
2002
adaptive signal processing; edge detection; statistical tests
01 Pubblicazione su rivista::01a Articolo in rivista
An efficient adaptive algorithm for edge detection based on the likelihood ratio test / DE SANTIS, Alberto; Iacoviello, Daniela. - In: INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING. - ISSN 0890-6327. - STAMPA. - 16:4(2002), pp. 289-308. [10.1002/acs.701]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/250736
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact