The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from > 40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rd1, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.
Cytogenetics of the Anopheles gambiae complex in Sudan, with special reference to An. arabiensis: relationships with East and West African populations / Petrarca, Vincenzo; A. D., Nugud; M. A., Elkarim Ahmed; A. M., Haridi; DI DECO, Maria Angela; COLUZZI BARTOCCIONI, Caio Mario. - In: MEDICAL AND VETERINARY ENTOMOLOGY. - ISSN 0269-283X. - STAMPA. - 14:2(2000), pp. 149-164. [10.1046/j.1365-2915.2000.00231.x]
Cytogenetics of the Anopheles gambiae complex in Sudan, with special reference to An. arabiensis: relationships with East and West African populations
PETRARCA, Vincenzo;DI DECO, Maria Angela;COLUZZI BARTOCCIONI, Caio Mario
2000
Abstract
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from > 40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rd1, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.