The expression of plasmid-borne virF of Shigella encoding a transcriptional regulator of the AraC family, is required to initiate a cascade of events resulting in activation of several operons encoding invasion functions. H-NS, one of the main nucleoid-associated proteins, controls the temperature-dependent expression of the virulence genes by repressing the in vivo transcription of virF only below a critical temperature (similar to 32 degrees C), This temperature-dependent transcriptional regulation has been reproduced in vitro and the targets of H-NS on the virF promoter were identified as two sites centred around -250 and -1 separated by an intrinsic DNA curvature. H-NS bound cooperatively to these two sites below 32 degrees C, but not at 37 degrees C. DNA supercoiling within the virF promoter region did not influence H-NS binding but was necessary for the H-NS-mediated transcriptional repression. Electrophoretic analysis between 4 and 60 degrees C showed that the virF promoter fragment, comprising the two H-NS sites, undergoes a specific and temperature-dependent conformational transition at similar to 32 degrees C. Our results suggest that this modification of the DNA target may modulate a cooperative interaction between H-NS molecules bound at two distant sites in the virF promoter region and thus represents the physical basis for the H-NS-dependent thermoregulation of virulence gene expression.
Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS / Maurizio, Falconi; Colonna, Bianca; Prosseda, Gianni; Gioacchino, Micheli; Claudio O., Gualerzi. - In: EMBO JOURNAL. - ISSN 0261-4189. - 17:23(1998), pp. 7033-7043. [10.1093/emboj/17.23.7033]
Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS
COLONNA, Bianca;PROSSEDA, Gianni;
1998
Abstract
The expression of plasmid-borne virF of Shigella encoding a transcriptional regulator of the AraC family, is required to initiate a cascade of events resulting in activation of several operons encoding invasion functions. H-NS, one of the main nucleoid-associated proteins, controls the temperature-dependent expression of the virulence genes by repressing the in vivo transcription of virF only below a critical temperature (similar to 32 degrees C), This temperature-dependent transcriptional regulation has been reproduced in vitro and the targets of H-NS on the virF promoter were identified as two sites centred around -250 and -1 separated by an intrinsic DNA curvature. H-NS bound cooperatively to these two sites below 32 degrees C, but not at 37 degrees C. DNA supercoiling within the virF promoter region did not influence H-NS binding but was necessary for the H-NS-mediated transcriptional repression. Electrophoretic analysis between 4 and 60 degrees C showed that the virF promoter fragment, comprising the two H-NS sites, undergoes a specific and temperature-dependent conformational transition at similar to 32 degrees C. Our results suggest that this modification of the DNA target may modulate a cooperative interaction between H-NS molecules bound at two distant sites in the virF promoter region and thus represents the physical basis for the H-NS-dependent thermoregulation of virulence gene expression.File | Dimensione | Formato | |
---|---|---|---|
Falconi_Thermoregulation_1998
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
507.12 kB
Formato
Adobe PDF
|
507.12 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.