It is proved that for no n can the Hamming space {0, 1}(n) be partitioned into three Hamming spheres of any, not necessarily equal radii. This fact is remarkable, since for every k not equal 3 there exist values of n for which the n-dimensional Hamming space can be partitioned into k spheres. (C) 1996 Academic Press, Inc.
Tight packings of Hamming spheres / Fachini, Emanuela; Korner, Janos. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 76:2(1996), pp. 292-294. [10.1006/jcta.1996.0105]
Tight packings of Hamming spheres
FACHINI, Emanuela;KORNER, JANOS
1996
Abstract
It is proved that for no n can the Hamming space {0, 1}(n) be partitioned into three Hamming spheres of any, not necessarily equal radii. This fact is remarkable, since for every k not equal 3 there exist values of n for which the n-dimensional Hamming space can be partitioned into k spheres. (C) 1996 Academic Press, Inc.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.