The aims of this study were to identify whether tissue renin is regulated by a negative-feedback mechanism produced by locally generated angiotensin (Ang II) in the adrenal cortex and to detect the pathway of Ang II modulation. For this purpose, in 36 12-week old, salt-restricted, nephrectomized Sprague-Dawley rats, we studied the effects of the Ang II AT1-subtype receptor antagonist losartan and of the Ang II AT2-subtype receptor antagonist PD123319 on renin mRNA and activity, aldosterone synthase mRNA, and AT1a-, AT1b-, and AT2-subtype receptor expression in the adrenal cortex. Ten additional rats, kept on a regular diet and then nephrectomized, were also studied. In salt-restricted, nephrectomized rats, losartan administration caused increases of adrenal renin mRNA (P<.05) and activity (P<.05) and a concomitant reduction of aldosterone synthase mRNA (P<.05). In addition, after losartan AT1b, receptor mRNA was reduced (P<.05), AT1a receptor mRNA was unchanged, and AT2 mRNA was increased (P<.05). PD123319 did not significantly modify any of these parameters. In conclusion, in salt-restricted, nephrectomized rats, selective antagonism of AT1-subtype receptors stimulates the expression and the activity of renin in the adrenal cortex. This observation demonstrates that Ang II locally formed in the adrenal cortex exerts a modulatory negative-feedback action on adrenal renin biosynthesis independent of the influence of the circulating renin-Ang system; this action is largely mediated through the AT1b-subtype receptors.
OPPOSITE FEEDBACK CONTROL OF RENIN AND ALDOSTERONE BIOSYNTHESIS IN THE ADRENAL CORTEX BY ANGIOTENSIN II AT1 SUBTYPE RECEPTORS / Gigante, B; Rubattu, Speranza Donatella; Russo, R; Porcellini, A; Enea, I; Depaolis, P; Savoia, Carmine; Natale, A; Piras, O; Volpe, Massimo. - In: HYPERTENSION. - ISSN 0194-911X. - 30:(1997), pp. 563-568.
OPPOSITE FEEDBACK CONTROL OF RENIN AND ALDOSTERONE BIOSYNTHESIS IN THE ADRENAL CORTEX BY ANGIOTENSIN II AT1 SUBTYPE RECEPTORS.
RUBATTU, Speranza Donatella;SAVOIA, Carmine;VOLPE, Massimo
1997
Abstract
The aims of this study were to identify whether tissue renin is regulated by a negative-feedback mechanism produced by locally generated angiotensin (Ang II) in the adrenal cortex and to detect the pathway of Ang II modulation. For this purpose, in 36 12-week old, salt-restricted, nephrectomized Sprague-Dawley rats, we studied the effects of the Ang II AT1-subtype receptor antagonist losartan and of the Ang II AT2-subtype receptor antagonist PD123319 on renin mRNA and activity, aldosterone synthase mRNA, and AT1a-, AT1b-, and AT2-subtype receptor expression in the adrenal cortex. Ten additional rats, kept on a regular diet and then nephrectomized, were also studied. In salt-restricted, nephrectomized rats, losartan administration caused increases of adrenal renin mRNA (P<.05) and activity (P<.05) and a concomitant reduction of aldosterone synthase mRNA (P<.05). In addition, after losartan AT1b, receptor mRNA was reduced (P<.05), AT1a receptor mRNA was unchanged, and AT2 mRNA was increased (P<.05). PD123319 did not significantly modify any of these parameters. In conclusion, in salt-restricted, nephrectomized rats, selective antagonism of AT1-subtype receptors stimulates the expression and the activity of renin in the adrenal cortex. This observation demonstrates that Ang II locally formed in the adrenal cortex exerts a modulatory negative-feedback action on adrenal renin biosynthesis independent of the influence of the circulating renin-Ang system; this action is largely mediated through the AT1b-subtype receptors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.