nterleukin 1beta (IL-1beta), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a "leaderless" secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1beta out of the cell. Indeed, although most of the IL-1beta precursor (proIL-1beta) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1beta and the endolysosomal hydrolase cathepsin D or for both IL-1beta and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1beta is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1beta secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1beta from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1beta but deplete the vesicular proIL-1beta content, indicating that exocytosis of proIL-1beta-containing vesicles is regulated by ATP and osmotic conditions.

The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles / Andrei, C.; Dazzi, C.; Lotti, Lavinia Vittoria; Torrisi, Maria Rosaria; Chimini, G. RUBARTELLI A.. - In: MOLECULAR BIOLOGY OF THE CELL. - ISSN 1059-1524. - STAMPA. - 10:(1999), pp. 1463-1475.

The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles

LOTTI, Lavinia Vittoria;TORRISI, Maria Rosaria;
1999

Abstract

nterleukin 1beta (IL-1beta), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a "leaderless" secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1beta out of the cell. Indeed, although most of the IL-1beta precursor (proIL-1beta) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1beta and the endolysosomal hydrolase cathepsin D or for both IL-1beta and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1beta is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1beta secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1beta from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1beta but deplete the vesicular proIL-1beta content, indicating that exocytosis of proIL-1beta-containing vesicles is regulated by ATP and osmotic conditions.
1999
01 Pubblicazione su rivista::01a Articolo in rivista
The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles / Andrei, C.; Dazzi, C.; Lotti, Lavinia Vittoria; Torrisi, Maria Rosaria; Chimini, G. RUBARTELLI A.. - In: MOLECULAR BIOLOGY OF THE CELL. - ISSN 1059-1524. - STAMPA. - 10:(1999), pp. 1463-1475.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/247076
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact