Abstract—A well-known result from linear system theory states that the minimal inner size of a factorization of the Hankel matrix H of a system gives the minimal order of a realization. In this brief it is shown that when dealing with positive linear systems, the existence of a factorization of the Hankel matrix into two nonnegative matrices is only a necessary condition for the existence of a positive realization of order equal to the inner size of the factorization. Necessary and sufficient conditions for the minimality of a positive realization in terms of positive factorization of the Hankel matrix are then derived.

A note on minimality of positive realizations / Benvenuti, Luca; Farina, Lorenzo. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. FUNDAMENTAL THEORY AND APPLICATIONS. - ISSN 1057-7122. - 45:6(1998), pp. 676-677. [10.1109/81.678491]

A note on minimality of positive realizations

BENVENUTI, Luca;FARINA, Lorenzo
1998

Abstract

Abstract—A well-known result from linear system theory states that the minimal inner size of a factorization of the Hankel matrix H of a system gives the minimal order of a realization. In this brief it is shown that when dealing with positive linear systems, the existence of a factorization of the Hankel matrix into two nonnegative matrices is only a necessary condition for the existence of a positive realization of order equal to the inner size of the factorization. Necessary and sufficient conditions for the minimality of a positive realization in terms of positive factorization of the Hankel matrix are then derived.
1998
factorization; positive systems; realization
01 Pubblicazione su rivista::01a Articolo in rivista
A note on minimality of positive realizations / Benvenuti, Luca; Farina, Lorenzo. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. FUNDAMENTAL THEORY AND APPLICATIONS. - ISSN 1057-7122. - 45:6(1998), pp. 676-677. [10.1109/81.678491]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/245385
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact