By enforcing the isomorphism between the group SL(2,K-fraktur sign) and linear fractional transforms, this letter shows that, for quasi-periodic orbits of 2D area-preserving maps possessing regions of chaotic behavior, the vector tangent to the quasiperiodic orbit can be obtained from the dynamics of the associated linear fractional transforms (obtained from the differential of the map), which is Cesaro convergent. Several implications of this geometric result are addressed. © 1999 Published by Elsevier Science B.V. All rights reserved.

Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems / Adrover, Alessandra; Giona, Massimiliano. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - 259:6(1999), pp. 451-459.

Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems

ADROVER, Alessandra;GIONA, Massimiliano
1999

Abstract

By enforcing the isomorphism between the group SL(2,K-fraktur sign) and linear fractional transforms, this letter shows that, for quasi-periodic orbits of 2D area-preserving maps possessing regions of chaotic behavior, the vector tangent to the quasiperiodic orbit can be obtained from the dynamics of the associated linear fractional transforms (obtained from the differential of the map), which is Cesaro convergent. Several implications of this geometric result are addressed. © 1999 Published by Elsevier Science B.V. All rights reserved.
1999
01 Pubblicazione su rivista::01a Articolo in rivista
Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems / Adrover, Alessandra; Giona, Massimiliano. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - 259:6(1999), pp. 451-459.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/245210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact