Gaseous [HN2O5]+ ions formed upon addition of NO2+ to nitric acid have been studied by mass spectrometric and computational methods. The results from MIKE, CAD and FT-ICR spectrometry and calculations at the B3LYP 6-311++G(3df, 3dp)//6-311G(d,p) level of theory show that the most stable adduct formed is an electrostatic HNO3·NO2+ complex where NO2+ is coordinated to the nitro group of nitric acid. Consequently, the nitro group is the energetically preferred protonation site of N2O5, whose experimental proton affinity (PA) amounts to 189.8 ± 2 kcal mol-1, vs theoretically computed values ranging from 182 to 188 kcal mol-1. Addition of NO2+ to XNO2 molecules (X = CH3O, C2H5O and NH2) also yields electrostatic complexes where the nitronium ion is coordinated to the NO2 group. The most stable [HN2O4]+ ion from the addition of NO+ to HNO3 is also identified as a cluster characterized by coordination of the nitrosonium ion to the nitro group, whose almost thermoneutral isomerization into a cluster where a nitronium ion is coordinated to the nitroso group of HNO2 is characterized by a sizable barrier. The larger PA of N2O5 than of H2O and HNO3 is of interest in atmospheric chemistry, pointing to protonation by H3O+ and/or H2NO3+ ions as the first step of the N2O5 destruction in ionic clusters and aerosols.

Gaseous [N2O5]H+, [N2O4]H+ and related species from the addition of NO2+ and NO+ ions to nitric acid and its derivatives / F., Bernardi; Cacace, Fulvio; DE PETRIS, Giulia; Pepi, Federico; I., Rossi. - In: JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY. - ISSN 1089-5639. - STAMPA. - 102:11(1998), pp. 1987-1994. [10.1021/jp980084m]

Gaseous [N2O5]H+, [N2O4]H+ and related species from the addition of NO2+ and NO+ ions to nitric acid and its derivatives.

CACACE, Fulvio;DE PETRIS, GIULIA;PEPI, Federico;
1998

Abstract

Gaseous [HN2O5]+ ions formed upon addition of NO2+ to nitric acid have been studied by mass spectrometric and computational methods. The results from MIKE, CAD and FT-ICR spectrometry and calculations at the B3LYP 6-311++G(3df, 3dp)//6-311G(d,p) level of theory show that the most stable adduct formed is an electrostatic HNO3·NO2+ complex where NO2+ is coordinated to the nitro group of nitric acid. Consequently, the nitro group is the energetically preferred protonation site of N2O5, whose experimental proton affinity (PA) amounts to 189.8 ± 2 kcal mol-1, vs theoretically computed values ranging from 182 to 188 kcal mol-1. Addition of NO2+ to XNO2 molecules (X = CH3O, C2H5O and NH2) also yields electrostatic complexes where the nitronium ion is coordinated to the NO2 group. The most stable [HN2O4]+ ion from the addition of NO+ to HNO3 is also identified as a cluster characterized by coordination of the nitrosonium ion to the nitro group, whose almost thermoneutral isomerization into a cluster where a nitronium ion is coordinated to the nitroso group of HNO2 is characterized by a sizable barrier. The larger PA of N2O5 than of H2O and HNO3 is of interest in atmospheric chemistry, pointing to protonation by H3O+ and/or H2NO3+ ions as the first step of the N2O5 destruction in ionic clusters and aerosols.
1998
01 Pubblicazione su rivista::01a Articolo in rivista
Gaseous [N2O5]H+, [N2O4]H+ and related species from the addition of NO2+ and NO+ ions to nitric acid and its derivatives / F., Bernardi; Cacace, Fulvio; DE PETRIS, Giulia; Pepi, Federico; I., Rossi. - In: JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY. - ISSN 1089-5639. - STAMPA. - 102:11(1998), pp. 1987-1994. [10.1021/jp980084m]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/244239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact