We propose a constructive method, inspired by Simpson's min-max technique (1992), for obtaining fuzzy neural networks. It adopts a cost function depending on a unique net parameter. This feature allows us to apply a simple unimodal search for determining this parameter and hence the architecture of the optimal net. The algorithm shows a good behavior with respect to other methods when applied to real classification problems. Due to the adopted fuzzy membership functions, it is particularly indicated when the classes are extremely overlapped (for instance, in the case of biological data). Some results at this regard are reported in the paper.

A Constructive Algorithm for Fuzzy Neural Networks / FRATTALE MASCIOLI, Fabio Massimo; Martinelli, Giuseppe; Rizzi, Antonello. - STAMPA. - 4:(1997), pp. 3193-3196. (Intervento presentato al convegno International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97) tenutosi a Monaco, Germania nel 21-24 April 1997) [10.1109/ICASSP.1997.595471].

A Constructive Algorithm for Fuzzy Neural Networks

FRATTALE MASCIOLI, Fabio Massimo;MARTINELLI, Giuseppe;RIZZI, Antonello
1997

Abstract

We propose a constructive method, inspired by Simpson's min-max technique (1992), for obtaining fuzzy neural networks. It adopts a cost function depending on a unique net parameter. This feature allows us to apply a simple unimodal search for determining this parameter and hence the architecture of the optimal net. The algorithm shows a good behavior with respect to other methods when applied to real classification problems. Due to the adopted fuzzy membership functions, it is particularly indicated when the classes are extremely overlapped (for instance, in the case of biological data). Some results at this regard are reported in the paper.
1997
9780646313030
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/242948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact