This article analyzes the continuum-mechanical representation of the global invariant geometric properties of 2D time-periodic Hamiltonian systems and chaotic flows. An application of this analysis concerns the evolution in time of the invariant measure associated with the space-filling properties of the invariant unstable foliation related in laminar chaotic flows to the pointwise intermaterial contact-area density between fluid elements. © 1999 Elsevier Science B.V. All rights reserved.

Continuous formulation of global invariant properties of 2D ti me-periodic chaotic flows / Giona, Massimiliano; Adrover, Alessandra. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - 256:1(1999), pp. 31-38.

Continuous formulation of global invariant properties of 2D ti me-periodic chaotic flows

GIONA, Massimiliano;ADROVER, Alessandra
1999

Abstract

This article analyzes the continuum-mechanical representation of the global invariant geometric properties of 2D time-periodic Hamiltonian systems and chaotic flows. An application of this analysis concerns the evolution in time of the invariant measure associated with the space-filling properties of the invariant unstable foliation related in laminar chaotic flows to the pointwise intermaterial contact-area density between fluid elements. © 1999 Elsevier Science B.V. All rights reserved.
1999
dynamical systems; area-preserving diffeomorphism; hyperbolic behavior
01 Pubblicazione su rivista::01a Articolo in rivista
Continuous formulation of global invariant properties of 2D ti me-periodic chaotic flows / Giona, Massimiliano; Adrover, Alessandra. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - 256:1(1999), pp. 31-38.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/242377
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact