Enzymes from psychrophiles show higher catalytic efficiency in the 0-20 degrees C temperature range and often lower thermostability in comparison with meso/thermophilic homologs. Physical and chemical characterization of these enzymes is currently underway in order to understand the molecular basis of cold adaptation. Psychrophilic enzymes are often characterized by higher flexibility, which allows for better interaction with substrates, and by a lower activation energy requirement in comparison with meso/thermophilic counterparts. In their tertiary structure, psychrophilic enzymes present fewer stabilizing interactions, longer and more hydrophilic loops, higher glycine content, and lower proline and arginine content. In this study, a comparative analysis of the structural characteristics of the interfaces between oligomeric psychrophilic enzyme subunits was carried out. Crystallographic structures of oligomeric psychrophilic enzymes, and their meso/thermophilic homologs belonging to five different protein families, were retrieved from the Protein Data Bank. The following structural parameters were calculated: overall and core interface area, characterization of polar/apolar contributions to the interface, hydrophobic contact area, quantity of ion pairs and hydrogen bonds between monomers, internal area and total volume of non-solvent-exposed cavities at the interface, and average packing of interface residues. These properties were compared to those of meso/thermophilic enzymes. The results were analyzed using Student's t-test. The most significant differences between psychrophilic and mesophilic proteins were found in the number of ion pairs and hydrogen bonds, and in the apolarity of their subunit interface. Interestingly, the number of ion pairs at the interface shows an opposite adaptation to those occurring at the monomer core and surface.

Structural adaptation to low temperature - analysis of the subunit interface of oligomeric psychrophilic enzymes / Tronelli, Daniele; Maugini, E; Bossa, Francesco; Pascarella, Stefano. - In: THE FEBS JOURNAL. - ISSN 1742-464X. - STAMPA. - 274:(2007), pp. 4595-4608. [10.1111/j.1742-4658.2007.05988.x]

Structural adaptation to low temperature - analysis of the subunit interface of oligomeric psychrophilic enzymes

TRONELLI, DANIELE;BOSSA, Francesco;PASCARELLA, Stefano
2007

Abstract

Enzymes from psychrophiles show higher catalytic efficiency in the 0-20 degrees C temperature range and often lower thermostability in comparison with meso/thermophilic homologs. Physical and chemical characterization of these enzymes is currently underway in order to understand the molecular basis of cold adaptation. Psychrophilic enzymes are often characterized by higher flexibility, which allows for better interaction with substrates, and by a lower activation energy requirement in comparison with meso/thermophilic counterparts. In their tertiary structure, psychrophilic enzymes present fewer stabilizing interactions, longer and more hydrophilic loops, higher glycine content, and lower proline and arginine content. In this study, a comparative analysis of the structural characteristics of the interfaces between oligomeric psychrophilic enzyme subunits was carried out. Crystallographic structures of oligomeric psychrophilic enzymes, and their meso/thermophilic homologs belonging to five different protein families, were retrieved from the Protein Data Bank. The following structural parameters were calculated: overall and core interface area, characterization of polar/apolar contributions to the interface, hydrophobic contact area, quantity of ion pairs and hydrogen bonds between monomers, internal area and total volume of non-solvent-exposed cavities at the interface, and average packing of interface residues. These properties were compared to those of meso/thermophilic enzymes. The results were analyzed using Student's t-test. The most significant differences between psychrophilic and mesophilic proteins were found in the number of ion pairs and hydrogen bonds, and in the apolarity of their subunit interface. Interestingly, the number of ion pairs at the interface shows an opposite adaptation to those occurring at the monomer core and surface.
2007
cold-adapted enzymes; electrostatic and hydrophobic interactions; interface; protein quaternary structure; psychrophiles
01 Pubblicazione su rivista::01a Articolo in rivista
Structural adaptation to low temperature - analysis of the subunit interface of oligomeric psychrophilic enzymes / Tronelli, Daniele; Maugini, E; Bossa, Francesco; Pascarella, Stefano. - In: THE FEBS JOURNAL. - ISSN 1742-464X. - STAMPA. - 274:(2007), pp. 4595-4608. [10.1111/j.1742-4658.2007.05988.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/241005
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 40
social impact