A parabolic Harnack inequality for the equation is proved; in particular, this implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence between the Schrödinger operator and the weighted Laplacian when . © Walter de Gruyter 2007.
Parabolic Harnack inequality for the heat equation with inverse-square potential / Moschini, Luisa; Tesei, Alberto. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - STAMPA. - 19:3(2007), pp. 407-427. [10.1515/forum.2007.017]
Parabolic Harnack inequality for the heat equation with inverse-square potential
MOSCHINI, Luisa;TESEI, Alberto
2007
Abstract
A parabolic Harnack inequality for the equation is proved; in particular, this implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence between the Schrödinger operator and the weighted Laplacian when . © Walter de Gruyter 2007.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.