ABSTRACT The effect of severe osmotic stress on the ultrastructural morphology of chromaffin cells in the adrenal homolog of Aphanius fasciatus, a small eurhyaline teleost living in saltpans, was evaluated by electron microscopy quantitative analysis. Fishes were transferred from salt water, whose salinity was 3.7%, to dechlorinated tap water and chromaffin cells were studied at resting condition and after 2 and 48 hr from the beginning of the experiment. Ultrastructural examination revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release, which was previously described in chromaffin cells of the mouse, rat, and human adrenal medulla. There was indeed a significant trend toward loss of content material from chromaffin granules accompanied by enlargement of granule size. Remarkably, chromaffin granules maintained their individual close structure during the whole releasing process and eventually transformed into large empty containers. A dramatic increase in the density of small, membrane-bound, variably electron-dense vesicles free in the cytoplasm or attached to granules was recognized during the first 2 hr of stress response. These features fell to control levels after 48 hr. A similar timecourse pattern was observed concerning the formation of budding projections from the surface of chromaffin granules. This study provides new insight into PMD physiology and suggests that PMD is part of an adaptive secretory response to severe osmotic stress in fishes. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes.

Chromaffin cells in the adrenal homolog of Aphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress. A hint for a conservative evolutionary process / Crivellato, E; Civinini, Annalena; Gallo, Valentina Patrizia. - In: ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY. - ISSN 1552-4884. - 288A:(2006), pp. 1077-1086. [10.1002/ar.a.20372]

Chromaffin cells in the adrenal homolog of Aphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress. A hint for a conservative evolutionary process.

CIVININI, Annalena;GALLO, Valentina Patrizia
2006

Abstract

ABSTRACT The effect of severe osmotic stress on the ultrastructural morphology of chromaffin cells in the adrenal homolog of Aphanius fasciatus, a small eurhyaline teleost living in saltpans, was evaluated by electron microscopy quantitative analysis. Fishes were transferred from salt water, whose salinity was 3.7%, to dechlorinated tap water and chromaffin cells were studied at resting condition and after 2 and 48 hr from the beginning of the experiment. Ultrastructural examination revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release, which was previously described in chromaffin cells of the mouse, rat, and human adrenal medulla. There was indeed a significant trend toward loss of content material from chromaffin granules accompanied by enlargement of granule size. Remarkably, chromaffin granules maintained their individual close structure during the whole releasing process and eventually transformed into large empty containers. A dramatic increase in the density of small, membrane-bound, variably electron-dense vesicles free in the cytoplasm or attached to granules was recognized during the first 2 hr of stress response. These features fell to control levels after 48 hr. A similar timecourse pattern was observed concerning the formation of budding projections from the surface of chromaffin granules. This study provides new insight into PMD physiology and suggests that PMD is part of an adaptive secretory response to severe osmotic stress in fishes. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes.
2006
adrenal homolog; Aphanius fasciatus; piecemeal degranulation (PMD)
01 Pubblicazione su rivista::01a Articolo in rivista
Chromaffin cells in the adrenal homolog of Aphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress. A hint for a conservative evolutionary process / Crivellato, E; Civinini, Annalena; Gallo, Valentina Patrizia. - In: ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY. - ISSN 1552-4884. - 288A:(2006), pp. 1077-1086. [10.1002/ar.a.20372]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/240128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact