We consider the Hamilton–Jacobi equation ?_t u + H(x, Du) = 0 in (0, +?) × T^N , where T^N is the flat N -dimensional torus, and the Hamiltonian H(x, p) is assumed continuous in x and strictly convex and coercive in p. We study the large time behavior of solutions, and we identify the limit through a Lax-type formula. Some convergence results are also given for H solely convex. Our qualitative method is based on the analysis of the dynamical properties of the Aubry set, performed in the spirit of [A. Fathi and A. Siconolfi, Calc. Var. Partial Differential Equations, 22 (2005), pp. 185–228]. This can be viewed as a generalization of the techniques used in [A. Fathi, C. R. Acad. Sci. Paris Ser. I Math., 327 (1998), pp. 267–270] and [J. M. Roquejoffre, J. Math. Pures Appl. (9), 80 (2001), pp. 85–104]. Analogous results have been obtained in [G. Barles and P. E. Souganidis, SIAM J. Math. Anal., 31 (2000), pp. 925–939] using PDE methods.

A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations / Davini, Andrea; Siconolfi, Antonio. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 38:2(2006), pp. 478-502. [10.1137/050621955]

A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations

DAVINI, ANDREA;SICONOLFI, Antonio
2006

Abstract

We consider the Hamilton–Jacobi equation ?_t u + H(x, Du) = 0 in (0, +?) × T^N , where T^N is the flat N -dimensional torus, and the Hamiltonian H(x, p) is assumed continuous in x and strictly convex and coercive in p. We study the large time behavior of solutions, and we identify the limit through a Lax-type formula. Some convergence results are also given for H solely convex. Our qualitative method is based on the analysis of the dynamical properties of the Aubry set, performed in the spirit of [A. Fathi and A. Siconolfi, Calc. Var. Partial Differential Equations, 22 (2005), pp. 185–228]. This can be viewed as a generalization of the techniques used in [A. Fathi, C. R. Acad. Sci. Paris Ser. I Math., 327 (1998), pp. 267–270] and [J. M. Roquejoffre, J. Math. Pures Appl. (9), 80 (2001), pp. 85–104]. Analogous results have been obtained in [G. Barles and P. E. Souganidis, SIAM J. Math. Anal., 31 (2000), pp. 925–939] using PDE methods.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations / Davini, Andrea; Siconolfi, Antonio. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 38:2(2006), pp. 478-502. [10.1137/050621955]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/237881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 69
social impact