Gene expression is to a large extent controlled at the level of mRNA accumulation. Genes whose products function together are likely under a common regulatory system (e.g. signal transduction pathways, sets of regulatory proteins) such that they are expressed in a coordinated manner. This property has been frequently used in the analysis of genome-wide expression data, as the experimental observation that a group of genes is co-expressed frequently implies that the genes share a common regulatory mechanism. The authors have investigated the situation in which dissimilarity in gene-expression time profiles may still result from the presence of the same regulatory signal, as in the case of common transcription factors. To this aim, a dynamic model that takes into account the effect of specific mRNA degradation on the shape of gene-expression time series has been developed, and the concept of ‘dynamically co-regulated’ genes has accordingly been introduced as the goodness-of-fit to such a model (called dynamic R2). The statistical analysis of dynamic R2 over a number of different experimental data sets and organisms shows that the presence of dynamically co-regulated genes is by far more significant than that expected from the randomised data. Furthermore, as an example of the usefulness of the proposed method, genome-wide yeast measurements such as cell-cycle time series and transcription factors targets data, were used to prove that dynamic co-regulation is statistically related to the presence of common transcription factor(s). This latter property is very useful when trying to infer computational indications of co-regulation for not-yet annotated genes that do not display a co-expression pattern.

Dynamic measure of gene co-regulation / DE SANTIS, Alberto; Farina, Lorenzo; G., Morelli; I., Ruberti. - In: IET SYSTEMS BIOLOGY. - ISSN 1751-8849. - 1:1(2007), pp. 10-17. [10.1049/iet-syb:20060031]

Dynamic measure of gene co-regulation

DE SANTIS, Alberto;FARINA, Lorenzo;
2007

Abstract

Gene expression is to a large extent controlled at the level of mRNA accumulation. Genes whose products function together are likely under a common regulatory system (e.g. signal transduction pathways, sets of regulatory proteins) such that they are expressed in a coordinated manner. This property has been frequently used in the analysis of genome-wide expression data, as the experimental observation that a group of genes is co-expressed frequently implies that the genes share a common regulatory mechanism. The authors have investigated the situation in which dissimilarity in gene-expression time profiles may still result from the presence of the same regulatory signal, as in the case of common transcription factors. To this aim, a dynamic model that takes into account the effect of specific mRNA degradation on the shape of gene-expression time series has been developed, and the concept of ‘dynamically co-regulated’ genes has accordingly been introduced as the goodness-of-fit to such a model (called dynamic R2). The statistical analysis of dynamic R2 over a number of different experimental data sets and organisms shows that the presence of dynamically co-regulated genes is by far more significant than that expected from the randomised data. Furthermore, as an example of the usefulness of the proposed method, genome-wide yeast measurements such as cell-cycle time series and transcription factors targets data, were used to prove that dynamic co-regulation is statistically related to the presence of common transcription factor(s). This latter property is very useful when trying to infer computational indications of co-regulation for not-yet annotated genes that do not display a co-expression pattern.
2007
cell-cycle time series; cellular biophysics; gene coregulation; gene expression time profiles; genetics; genome-wide yeast measurements; microorganisms; molecular biophysics; mrna; physiological models; proteins; regulatory proteins; signal transduction pathways; statistical analysis; transcription factors
01 Pubblicazione su rivista::01a Articolo in rivista
Dynamic measure of gene co-regulation / DE SANTIS, Alberto; Farina, Lorenzo; G., Morelli; I., Ruberti. - In: IET SYSTEMS BIOLOGY. - ISSN 1751-8849. - 1:1(2007), pp. 10-17. [10.1049/iet-syb:20060031]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/237786
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact