Postnatal skeletal stem cells are a subpopulation of the bone marrow stromal cell network. To date, the most straightforward way of assessing the activity of skeletal stem cells within the bone marrow stromal cell (BMSC) population is via analysis of the rapidly adherent, colony-forming unit-fibroblast (CFU-F), and their progeny, BMSCs. Several in vitro methods are employed to determine the differentiation capacity of BMSCs, using osteogenic and adipogenic "cocktails" and staining protocols, and pellet cell culture for chondrogenic differentiation. However, true differentiation potential is best determined by in vivo transplantation in either closed or open systems. By in vivo transplantation, approximately 10% of the clonal strains are able to form bone, stroma, and marrow adipocytes, and are true skeletal stem cells. Furthermore, when derived from patients or animal models with abnormalities in gene expression, they recapitulate the disease phenotype on in vivo transplantation. Although ex vivo expansion of BMSCs inevitably dilutes the skeletal stem cells, when used en masse, they are attractive candidates for reconstruction of segmental bone defects, and as targets for gene therapy.

Post-natal skeletal stem cells / Bianco, Paolo; Kuznetsov, Sa; Riminucci, Mara; GEHRON ROBEY, P.. - 419:(2006), pp. 117-148. [10.1016/S0076-6879(06)19006-0]

Post-natal skeletal stem cells

BIANCO, Paolo;RIMINUCCI, MARA;
2006

Abstract

Postnatal skeletal stem cells are a subpopulation of the bone marrow stromal cell network. To date, the most straightforward way of assessing the activity of skeletal stem cells within the bone marrow stromal cell (BMSC) population is via analysis of the rapidly adherent, colony-forming unit-fibroblast (CFU-F), and their progeny, BMSCs. Several in vitro methods are employed to determine the differentiation capacity of BMSCs, using osteogenic and adipogenic "cocktails" and staining protocols, and pellet cell culture for chondrogenic differentiation. However, true differentiation potential is best determined by in vivo transplantation in either closed or open systems. By in vivo transplantation, approximately 10% of the clonal strains are able to form bone, stroma, and marrow adipocytes, and are true skeletal stem cells. Furthermore, when derived from patients or animal models with abnormalities in gene expression, they recapitulate the disease phenotype on in vivo transplantation. Although ex vivo expansion of BMSCs inevitably dilutes the skeletal stem cells, when used en masse, they are attractive candidates for reconstruction of segmental bone defects, and as targets for gene therapy.
2006
skeletal stem cells
01 Pubblicazione su rivista::01a Articolo in rivista
Post-natal skeletal stem cells / Bianco, Paolo; Kuznetsov, Sa; Riminucci, Mara; GEHRON ROBEY, P.. - 419:(2006), pp. 117-148. [10.1016/S0076-6879(06)19006-0]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/236282
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 62
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 135
social impact