We consider the minimization problem for an integral functional $J$, possibly nonconvex and noncoercive in $W^{1,1}_0(\Omega)$, where $\Omega\subset\R^n$ is a bounded smooth set. We prove sufficient conditions in order to guarantee that a suitable Minkowski distance is a minimizer of $J$. The main result is a necessary and sufficient condition in order to have the uniqueness of the minimizer. We show some application to the uniqueness of solution of a system of PDEs of Monge-Kantorovich type arising in problems of mass transfer theory.

A sharp uniqueness result for a class of variational problems solved by a distance function / Crasta, Graziano; Malusa, Annalisa. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 243:2(2007), pp. 427-447. [10.1016/j.jde.2007.05.026]

A sharp uniqueness result for a class of variational problems solved by a distance function

CRASTA, Graziano;MALUSA, ANNALISA
2007

Abstract

We consider the minimization problem for an integral functional $J$, possibly nonconvex and noncoercive in $W^{1,1}_0(\Omega)$, where $\Omega\subset\R^n$ is a bounded smooth set. We prove sufficient conditions in order to guarantee that a suitable Minkowski distance is a minimizer of $J$. The main result is a necessary and sufficient condition in order to have the uniqueness of the minimizer. We show some application to the uniqueness of solution of a system of PDEs of Monge-Kantorovich type arising in problems of mass transfer theory.
2007
distance function; euler equation; mass transfer problems; minimum problems with constraints; p-laplace equation; uniqueness
01 Pubblicazione su rivista::01a Articolo in rivista
A sharp uniqueness result for a class of variational problems solved by a distance function / Crasta, Graziano; Malusa, Annalisa. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 243:2(2007), pp. 427-447. [10.1016/j.jde.2007.05.026]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/236233
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact