We study the homogenization of the equation $$ R(\eps^{-1}x){\partial u_{\eps} \over\partial t}-\Delta u_{\eps} = f $$ where $R$ is a periodic function which may vanish or change sign, with appropriate initial/final conditions. The main tool is a compactness result for sequences of functions which have bounded norms in the spaces associated to the problems.
Homogenization of forward-backward parabolic equations / Amar, Micol; Dall'Aglio, Andrea; F., Paronetto. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 42:1-2(2005), pp. 123-132.
Homogenization of forward-backward parabolic equations
AMAR, Micol;DALL'AGLIO, Andrea;
2005
Abstract
We study the homogenization of the equation $$ R(\eps^{-1}x){\partial u_{\eps} \over\partial t}-\Delta u_{\eps} = f $$ where $R$ is a periodic function which may vanish or change sign, with appropriate initial/final conditions. The main tool is a compactness result for sequences of functions which have bounded norms in the spaces associated to the problems.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.