Employing the geometrically exact approach, the governing equations of nonlinear planar motions around nonshallow prestressed equilibrium states of slender beams are derived. Internal kinematic constraints and approximations are introduced considering unshearable extensible and inextensible beams. The obtained approximate models, incorporating quadratic and cubic nonlinearities, are amenable to a perturbation treatment in view of asymptotic solutions. The different perturbation schemes for the two mechanical beam models are discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Modeling of planar nonshallow prestressed beams towards asymptotic solutions / Lacarbonara, Walter; Paolone, Achille; H., Yabuno. - In: MECHANICS RESEARCH COMMUNICATIONS. - ISSN 0093-6413. - STAMPA. - 31:3(2004), pp. 301-310. [10.1016/j.mechrescom.2003.11.004]

Modeling of planar nonshallow prestressed beams towards asymptotic solutions

LACARBONARA, Walter;PAOLONE, ACHILLE;
2004

Abstract

Employing the geometrically exact approach, the governing equations of nonlinear planar motions around nonshallow prestressed equilibrium states of slender beams are derived. Internal kinematic constraints and approximations are introduced considering unshearable extensible and inextensible beams. The obtained approximate models, incorporating quadratic and cubic nonlinearities, are amenable to a perturbation treatment in view of asymptotic solutions. The different perturbation schemes for the two mechanical beam models are discussed. (C) 2003 Elsevier Ltd. All rights reserved.
2004
cosserat rod; direct perturbation approach; initial curvature; post-buckling; prestressed arch
01 Pubblicazione su rivista::01a Articolo in rivista
Modeling of planar nonshallow prestressed beams towards asymptotic solutions / Lacarbonara, Walter; Paolone, Achille; H., Yabuno. - In: MECHANICS RESEARCH COMMUNICATIONS. - ISSN 0093-6413. - STAMPA. - 31:3(2004), pp. 301-310. [10.1016/j.mechrescom.2003.11.004]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/235669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact