We consider the nonlinear elliptic problem −div(a(x,Du)) + b(x, u) = μ with homogeneous boundary conditions in an open (possibly unbounded) subset of R^N , N >2. μ is a Radon measure with bounded variation, and u ->−div (a(x,Du)) +b(x, u) is a monotone operator acting in W^{1,p}_0, 1 < p < N. We prove that for every μ there exists at least a renormalized solution u to the problem, that is a distributional solution with additional summability properties. Moreover, if the operator is strictly monotone and μ does not charge sets of capacity zero, such a solution is unique.

Renormalized solutions to elliptic equations with measure data in unbounded domains / Malusa, Annalisa; Porzio, Maria Michaela. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 67:8(2007), pp. 2370-2389. [10.1016/j.na.2006.09.007]

Renormalized solutions to elliptic equations with measure data in unbounded domains

MALUSA, ANNALISA;PORZIO, Maria Michaela
2007

Abstract

We consider the nonlinear elliptic problem −div(a(x,Du)) + b(x, u) = μ with homogeneous boundary conditions in an open (possibly unbounded) subset of R^N , N >2. μ is a Radon measure with bounded variation, and u ->−div (a(x,Du)) +b(x, u) is a monotone operator acting in W^{1,p}_0, 1 < p < N. We prove that for every μ there exists at least a renormalized solution u to the problem, that is a distributional solution with additional summability properties. Moreover, if the operator is strictly monotone and μ does not charge sets of capacity zero, such a solution is unique.
2007
01 Pubblicazione su rivista::01a Articolo in rivista
Renormalized solutions to elliptic equations with measure data in unbounded domains / Malusa, Annalisa; Porzio, Maria Michaela. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 67:8(2007), pp. 2370-2389. [10.1016/j.na.2006.09.007]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/234409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact