The Cramer-Rao lower bound (CRLB) was determined for different ultra-wideband (UWB) signal formats and, in particular, for the two UWB high-data-rate (HDR) signal formats proposed within the IEEE 802.15.3a Task Group, that is, the impulsive direct-sequence UWB (DS-UWB) and the nonimpulsive multiband orthogonal frequency-division multiplexing (MB-OFDM), and an impulsive time hopping (TH) UWB format close to the format for UWB low data rate (LDR) of the forthcoming IEEE 802.15.4a standard. The analysis was carried out for both ideal and multipath channels under power constraints as set by emission masks. Results obtained for HDR formats showed that DS-UWB has better ranging accuracy than does MB-OFDM, thanks to its potentially larger bandwidth and higher frequency of operation. In addition, the degree of multipath strongly affected ranging accuracy, although differently for DS-UWB versus MB-OFDM. When incorporating a correlation receiver structure as well as an Early Late gate synchronizer in the model, ranging performance proved to be related to features of the synchronization sequence. For specific synchronization sequences, in particular, the best ranging accuracy was obtained with MB-OFDM. In the case of LDR, the study analyzed the effect of pulse shape on CRLB. Results showed that a suboptimal choice of the pulse shape reduces the ranging accuracy-achievable by TH-UWB signals.
UWB ranging accuracy in high- and low-data-rate applications / R., Cardinali; DE NARDIS, Luca; DI BENEDETTO, Maria Gabriella; Lombardo, Pierfrancesco. - In: IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. - ISSN 0018-9480. - STAMPA. - 54:4(2006), pp. 1865-1875. (Intervento presentato al convegno IEEE International Conference on Ultra-Wideband tenutosi a Zurich, SWITZERLAND nel SEP 05-08, 2005) [10.1109/tmtt.2006.871993].
UWB ranging accuracy in high- and low-data-rate applications
DE NARDIS, LUCA;DI BENEDETTO, Maria Gabriella;LOMBARDO, Pierfrancesco
2006
Abstract
The Cramer-Rao lower bound (CRLB) was determined for different ultra-wideband (UWB) signal formats and, in particular, for the two UWB high-data-rate (HDR) signal formats proposed within the IEEE 802.15.3a Task Group, that is, the impulsive direct-sequence UWB (DS-UWB) and the nonimpulsive multiband orthogonal frequency-division multiplexing (MB-OFDM), and an impulsive time hopping (TH) UWB format close to the format for UWB low data rate (LDR) of the forthcoming IEEE 802.15.4a standard. The analysis was carried out for both ideal and multipath channels under power constraints as set by emission masks. Results obtained for HDR formats showed that DS-UWB has better ranging accuracy than does MB-OFDM, thanks to its potentially larger bandwidth and higher frequency of operation. In addition, the degree of multipath strongly affected ranging accuracy, although differently for DS-UWB versus MB-OFDM. When incorporating a correlation receiver structure as well as an Early Late gate synchronizer in the model, ranging performance proved to be related to features of the synchronization sequence. For specific synchronization sequences, in particular, the best ranging accuracy was obtained with MB-OFDM. In the case of LDR, the study analyzed the effect of pulse shape on CRLB. Results showed that a suboptimal choice of the pulse shape reduces the ranging accuracy-achievable by TH-UWB signals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.