In this work we treat in detail the acceleration of the freespace scalar Green’s function in three dimensional (3-D) structures with one dimensional (1-D) periodicity. We analyze the methods able to deal with a complex phase shift, necessary to study complex waves in periodic structures. We present a spectral Kummer-Poisson’s decomposition; then we extend the application of the Ewald’s method by performing an optimization of the relevant splitting parameter, and we also find an integral representation. Comparisons among the various acceleration methods are performed, thus providing fundamental information on their actual efficiency.

3-D Green’s function in 1-D periodic structures: a comparative analysis of acceleration techniques / Valerio, Guido; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro. - STAMPA. - (2006), pp. 1-5. [10.1109/EUCAP.2006.4584480]

3-D Green’s function in 1-D periodic structures: a comparative analysis of acceleration techniques

VALERIO, GUIDO;BACCARELLI, Paolo;BURGHIGNOLI, Paolo;GALLI, Alessandro
2006

Abstract

In this work we treat in detail the acceleration of the freespace scalar Green’s function in three dimensional (3-D) structures with one dimensional (1-D) periodicity. We analyze the methods able to deal with a complex phase shift, necessary to study complex waves in periodic structures. We present a spectral Kummer-Poisson’s decomposition; then we extend the application of the Ewald’s method by performing an optimization of the relevant splitting parameter, and we also find an integral representation. Comparisons among the various acceleration methods are performed, thus providing fundamental information on their actual efficiency.
2006
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
3-D Green’s function in 1-D periodic structures: a comparative analysis of acceleration techniques / Valerio, Guido; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro. - STAMPA. - (2006), pp. 1-5. [10.1109/EUCAP.2006.4584480]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/232353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact