This paper presents a plain strain analytical model, based on the elasticity theory, to determine the confining pressures of transverse reinforcements on the concrete core of a reinforced concrete member. The analytical evaluation of the confining pressures was first carried out on reinforced sections with square and circular stirrups, and subsequently on reinforcement configurations of greater complexity with square and rectangular stirrups and supplementary cross ties. Finally, the model has been used to evaluate the confining pressures applied by external wrapping in any material [fiber-reinforced polymer (FRP), S-glass, steel, etc.] and to design better combinations of techniques and confinement materials. In order to obtain the stress–strain curves due to passive confinement, an analogy between square and circular sections has been introduced. In this way, any active confinement model derived by triaxial tests on cylindrical specimens can be used. The model has been validated by comparing its predictions with results from existing models and experimental tests.

Analytical Stress-Strain Relationship for Concrete Confined by Steel Stirrups and/or FRP Jackets / Braga, Franco; Gigliotti, Rosario; M., Laterza. - In: JOURNAL OF STRUCTURAL ENGINEERING. - ISSN 0733-9445. - STAMPA. - 132:9(2006), pp. 1402-1416. [10.1061/(ASCE)0733-9445(2006)132:9(1402)]

Analytical Stress-Strain Relationship for Concrete Confined by Steel Stirrups and/or FRP Jackets

BRAGA, Franco;GIGLIOTTI, Rosario;
2006

Abstract

This paper presents a plain strain analytical model, based on the elasticity theory, to determine the confining pressures of transverse reinforcements on the concrete core of a reinforced concrete member. The analytical evaluation of the confining pressures was first carried out on reinforced sections with square and circular stirrups, and subsequently on reinforcement configurations of greater complexity with square and rectangular stirrups and supplementary cross ties. Finally, the model has been used to evaluate the confining pressures applied by external wrapping in any material [fiber-reinforced polymer (FRP), S-glass, steel, etc.] and to design better combinations of techniques and confinement materials. In order to obtain the stress–strain curves due to passive confinement, an analogy between square and circular sections has been introduced. In this way, any active confinement model derived by triaxial tests on cylindrical specimens can be used. The model has been validated by comparing its predictions with results from existing models and experimental tests.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/232222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 75
social impact